CSE 132A
Database System Principles
Fall, 2015

The slides are partially based on Prof. Victor Vianu’s slides for past offerings of CSE132A

Alin Deutsch
introduction
“Databases”

What comes to your mind?
Data. Why data?

- Data play already an important role in our lives
Data in everyday life

Let’s go have some coffee!

Find coffee shop

Yelp

Maps

Stores

Reviews

Maps

Traffic
Let’s go have some coffee!

Data in everyday life

- Order coffee
- Inventory
- Sales
- Accounts
- Statistics
- Fraud Detection

Coffee House

Bank
Data in everyday life

Let’s go have some coffee!

Check facebook

Facebook

Profile
Data. Why data?

• Data play already an important role in our lives…
• …and computer science is becoming more and more data-centric
Data in Computer Science

- Web knowledge harvesting
- Crowd sourcing
- Cloud computing
- Scientific databases
- Networks
- Streaming sensor monitoring
- Social networks
- Geographic information systems
- Big data…
Big Data in the news

Why Big Data Will Drive the Next Big Boost in Productivity
BY DAVID STEINBERG, XL MARKETING 06.28.13

Wired

Goldman Sachs invests $100M in 13-year-old big data firm

The Big Data Opportunity in Travel

The Wall Street Journal

Big Data is a Big Deal

The White House

Four Big Data Trends That Change Everything

Forbes

To launch the initiative, six Federal departments and agencies will announce more than $200 million in new commitments...

The White House
How to manage data?

- Store data
- Query/retrieve data
- Update data

This class:
Learn basic concepts behind data management systems
Database System

- Tailored to a particular application
 Very time-consuming to design, implement and optimize
Database Management System

• A generalized database system
• Used in a variety of application environments
• Provides common approach to:
 Data organization
 Data storage
 Data access
 Data control

• Examples:
 Ingres/PostgreSQL, DB2, Oracle, SQL Server, MySQL, etc

Leverage years of research gone into the design of the DBMS
History of Database Systems

1950 - early 1960s

- Data processing based on magnetic tapes
 Magnetic tapes for data storage
 Punched cards for data input

- Need to process data in specific order
 Magnetic tapes allow only sequential order to data
History

late 1960s - 1970s

• Advent of disks
 No need for sequential processing
 Design of data structures for data storage and processing

• Relational model
 Proposed by Codd (who won the Turing Award for his work)
 Non-procedural way of querying data
History

1980s

• Research relational prototypes…
 System R (by IBM Research)
 Ingres (by UC Berkeley)

• …lead to commercial relational systems
 IBM DB2, Oracle, Ingres, DEC Rdb
History

1990s

- The WWW era
- New requirements for DBMSs
 - High availability
 - Support for web interfaces to data
- From transaction (update-intensive) processing to query-intensive applications (decision support and data mining)
History

2000s - 2010s

• XML & XQuery standards
• Automated DB administration
 Auto-admin
• Open-source DBMSs
 PostgreSQL, MySQL
• Specialized DBMSs for big data management
 Column stores, highly parallel DBMSs, NoSQL
• Tremendous expansion across computer science
class info
Goal of the class

• Learn basic principles of database management systems (DBMSs) with an emphasis on the relational model

• Get hand-on experience using a real DBMS through programming assignments

• Acquire the necessary background for follow-up database courses
 CSE 132B: Database System Applications
 CSE 135: Online Analytics Applications
Content

• Database Management System Overview

• Relational databases
 The relational model
 Commercial query languages: SQL (& QBE)
 Formal query languages: relational algebra & calculus
 Indexing (sequential files, B-trees)
 Schema design: normal forms & E-R model

• Other topics as time allows
 Column Store, MapReduce, NoSQL
Course Composition

Tentative (to be adjusted based on time allowance):

• Homeworks: 15%
• Programming Assignments (SQL + JDBC): 30%
• Midterm: 25%
• Final: 30%
Textbook

• Main textbook (recommended, not required):
 "Database System Concepts"
 by Silberschatz, Korth and Sudarshan, 6th Edition

• Alternative textbook:
 "Database Systems: The Complete Book"
 by H. Garcia-Molina, J.Ullman and J. Widom, Prentice Hall

• For those interested in database theory:
 "Foundations of Databases"
 by S.Abiteboul, R.Hull and V.Vianu, Addison-Wesley, 1995
Other resources

• Class web-site
 http://db.ucsd.edu/cse132a/

• Piazza discussion forum
 https://piazza.com/ucsd/fall2015/cse132a/home/

• Gradiance online SQL learning system
 http://www.newgradiance.com/services/servlet/COTC

Announcements will be made to the web-site and/or piazza. Check both daily for updates!
Course Policies

• No plagiarism!

• Re-grade
 Request at TA within 1 week from the day of return

• Makeups or extensions only in true hardship cases
 Contact me as soon as possible

• E-mail
 Prefer office hours & Piazza. If you use it, conciseness is a virtue!

Read policies on the course web-site!
Contact me for questions.
Databases@UCSanDiego

• Database group
 Prof. Alin Deutsch
 Prof. Yannis Papakonstantinou
 Prof. Victor Vianu

• Group web-site
 http://db.ucsd.edu

• Interested in database research?
 Contact any of us!