Parallel Databases

- Increase performance by performing operations in parallel

Parallel Architectures

- Shared memory
- Shared disk
- Shared nothing

Parallelism Terminology

- Speedup: More processors ➔ Faster
 If you increase the processors, how much faster is the system (typically measured in transactions per second)?

- Scaleup: More processors ➔ Process more data
 If you increase proportionally the number of processors and data, what is the performance of the system?
Challenges

For linear speedup and scaleup:

• Startup cost
 Cost to start processes

• Interference
 Contention for resources between processors

• Skew
 Different sized jobs between processors
Parallel Architectures

Shared-Nothing

- Disk
- Memory
- Processor
- Interconnection Network

Architecture Comparison

- Shared memory
 - Good for load-balancing, easiest to program
 - Memory contention: Does not scale
- Shared disk
 - Disk contention: Does not scale
- Shared nothing
 - Scales linearly, can use commodity H/W
 - Hardest to program

Types of Parallelism

In query evaluation:

- Inter-query parallelism
 - Each query runs on one processor
- Inter-operator parallelism
 - A query runs on multiple processors
 - Each operator runs on one processor
- Intra-operator parallelism
 - An operator runs on multiple processors
 - Most scalable
Horizontal Data Partitioning

Divide tuples of a relation among n nodes:

• Round robin
 Send tuple \(t \) to node \([i \mod n] \)

• Hash partitioning on an attribute \(C \)
 Send tuple \(t \) to node \([h(t.C) \mod n] \)

• Range partitioning on an attribute \(C \)
 Send tuple \(t \) to node \(i \) if \(v_{i-1} < t.C < v_i \)

Which is better? Let’s see…

Parallel Operators

• Selection
• Group-By
• Join
• Sort
• Duplicate Elimination
• Projection

Parallel Selection

\[\sigma_{A = v} \quad \text{or} \quad \sigma_{v_1 < A < v_2} \]

Done in parallel in:

• Round robin
 All nodes
• Hash partitioning
 One node for \(C = v \)
 All nodes for \(v_1 < C < v_2 \), all nodes for \(A = v \)
• Range partitioning
 All nodes whose range overlaps with the selection
Parallel Group By

1) Each node partitions its data using hash function $h(t.A)$ to at most as many partitions as nodes.

2) Each node sends each partition to one node. All tuples with the same group by value get collected in one node.

3) Each node computes aggregate for its partition.

High communication cost (although << I/O cost)
Parallel Group By Optimization

\(Y_{A; \text{SUM}(B)} \)

0) Each node does local aggregation first and then applies previous steps on the aggregation result

Parallel Join (Equi-join)

\(R \bowtie_{R.A = S.B} S \)

Follow similar logic to Group By:

- Partition data of R and S using hash functions
- Send partitions to corresponding nodes
- Compute join for each partition locally on each node

Parallel Join (General)

\(R \bowtie_{R.A < S.B} S \)

- Does the previous solution work?
- If no, why?
Parallel Join (General)

\[R \bowtie_{R.A < S.B} S \]

Use "fragment and replicate":

1) Fragment both relations
 Partition \(R \) into \(m \) partitions & \(S \) into \(n \) partitions

2) Assign each possible combination of partitions to one node (requires \(m \times n \) nodes)
 Each partition is replicated across many nodes

Parallel Sort

Use same partitioning idea as in group by and equi-join:

- Partition data of \(R \) and \(S \) using range partitioning
- Send partitions to corresponding nodes
- Compute sort for each partition locally on each node

Note: Different partitioning techniques suitable for different operators
Partitioning Revisited

- **Round robin**
 - Good for load-balancing
 - Have to access always all the data

- **Hash partitioning**
 - Good for load-balancing
 - Works only for equality predicates

- **Range partitioning**
 - Works for range queries
 - May suffer from skew

Other Operators

Duplicate Elimination:
- Use sorting or
- Use partitioning (range or hash)

Projection (wo duplicate elimination):
- Independently at each node

Parallel Query Plans

- The same relational operators
- With special split and merge operators
 To handle data routing, buffering and flow control
Cost of Parallel Execution

Ideally:
• Parallel Cost = Sequential Cost / # of nodes
but
• Parallel evaluation introduces overhead
• The partitioning may be skewed

Cost of Parallel Execution

Parallel Cost = $T_{\text{part}} + T_{\text{asm}} + \max(T_1, \ldots, T_n)$

Time to partition the data
Time to assemble the results
T_i: Time to execute the operation at node i

Parallel Databases Review

• Parallel Architectures
• Ways to parallelize a database
• Partitioning Schemes
• Algorithms
Shared-Nothing Parallelism and MapReduce

Large-scale data processing

- High-level programming model (API) &
- Corresponding implementation
- Don’t worry about:
 - Parallelization
 - Data distribution
 - Load balancing
 - Fault tolerance

A little history

First paper by Google in 2004

It was used to regenerate Google’s index

A little history

- Apache Hadoop: Popular open-source implementation
 - Nowadays you can run hadoop without even setting up your own infrastructure
MR Performance

How long does it take to sort 9TB of data on 900 nodes? What about 20TB on 2000 nodes?

From Hadoop FAQs:

1.3. How does long does Hadoop scale?

Hadoop has been demonstrated on clusters of up to 4096 nodes. Sort performance on 900 nodes is good: sorting 9TB of data on 900 nodes takes around 1.5 hours and sorting 14TB of data on a 1400-node cluster takes 2.2 hours; sorting 20TB on a 2000-node cluster takes 2.5 hours. The update to the above configuration being:

Anatomy of a MR Program

- Input:
 - bag of \((\text{input key, value})\) pairs
- Output:
 - bag of \(\text{output values}\)
- Structure:
 - Map function
 - Reduce function

Map function

- Input:
 - \((\text{input key, value})\) pair
- Output:
 - \((\text{intermediate key, value})\) pair
- Semantics:
 - System applies the function in parallel to all \((\text{input key, value})\) pairs in the input
Reduce function

- Input: (intermediate key, bag of values) pair
- Output: bag of output values
- Semantics: System groups all pairs with the same intermediate key and passes the bag of values to the Reduce function

Example 1

Word Occurrence Count

For each word in a set of documents, compute the number of its occurrences in the entire set

map (String key, String value) {
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");
} reduce (String key, Iterator values) {
 // key: a word
 // value: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 EmitString(key, AsString(result));
}

For each word in a set of documents, compute the number of its occurrences in the entire set

map (String key, String value) {
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");
} reduce (String key, Iterator values) {
 // key: a word
 // value: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 EmitString(key, AsString(result));
}
Example 1
Word Occurrence Count

• Do you see any way to improve this solution?

map (String key, String value) {
 // key: document name
 // value: document contents
 H = new AssociativeArray;
 for each word w in value:
 H(w) += 1;
 for each word w in H:
 EmitIntermediate(w, H(w));
}

Each mapper sums up the counts for each document

Improve the MR program by reducing the number of intermediate pairs produced by each mapper:

```
(x, 3)  (x, 1)
(x, 2)  (x, 1)  (x, 1)
(x, 1)  (x, 1)  (x, 1)  (x, 2)

reduce1 (x, 6)

reduce2 (x, 4)

reduce3 (x, 3)  (y, 3)  (z, 2)
```

Example 1
Word Occurrence Count
Example 1

Word Occurrence Count

• Do you see any other possibility to improve performance?

Introducing the Combiner

• Combiner:
 Combine values output by each Mapper (since they already exist in main memory). Similar to an intermediate reduce for each individual Mapper.

 • Input:
 bag of (intermediate key, bag of values) pairs

 • Output:
 bag of (intermediate key, bag of values) pairs

 • Semantics:
 System groups for each mapper separately "all" pairs with the same intermediate key and passes the bag of values to the Combiner function

Example 1

Word Occurrence Count

Improve the MR program by utilizing a combiner:

```java
combine(String key, Iterator values) {
    / key: word
    // value: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    EmitString(key, AsString(result));
}
```

Does it look familiar?
It has the same code as the reduce function!
Example 1
Word Occurrence Count

More examples

• Sorting
• Selection
• Join

More examples

• Sorting
 Leverage the fact that data are sorted before being pushed to the reducers and also reducers themselves are sorted
 Map: \((k, v) \rightarrow (v, _}\)
 Reduce: \((v, _) \rightarrow v\)
More examples

- Join
 Hash on join attribute
 Have to encode the relation name as well
 Map: (table, bag of tuples) \(\rightarrow\) (join attribute, (tuple, relName))
 Reduce: (join attribute, (tuple, relName)) \(\rightarrow\) output tuple

- Other possibility?
- Join on mappers
 If one of the relations fits in main memory

Implementation

- One Master node: Scheduler & Coordinator
- Many Workers: Servers for Map/Reduce tasks

Implementation

- Map Phase (need M workers)
 - Master partitions input file into M splits, by key
 - Master assigns workers to the M map tasks
 - Workers execute the map task, write their output to local disk, partitioned into R regions according to some hash function

- Reduce Phase (need R workers)
 - Master assigns workers to the R reduce tasks
 - Each worker reads data from the corresponding mapper’s disk, groups it by key and execute the reduce function
Implementation

- Filesystem
 - Input & Output of MapReduce are stored in a distributed file system
 - Each file is partitioned into chunks
 - Each chunk is replicated on multiple machines
 - Implementations:
 - GFS (Google File System): Proprietary
 - HDFS (Hadoop File System): Open source

Some more details

- Fault Tolerance
 - Master pings each worker periodically
 - If it does not reply, tasks assigned to it are reset to their initial state and rescheduled on other workers

Some more details

- Tuning
 - Developer has to specify M & R:
 M: # of map tasks
 R: # of reduce tasks
 - Larger values: Better load balancing
 - Limit: Master need O(M x R) memory
 - Also specify: 100 other parameters (50 of which affect runtime significantly)
 - Automatic tuning?
MR: The ultimate solution?

- Problems
 - Batch oriented: Not suited for real-time processes
 - A phase (e.g., Reduce) has to wait for the previous phase (e.g., Map) to complete
 - Can suffer from stragglers: workers taking a long time to complete
 - Data Model is extremely simple for databases: Not everything is a flat file
 - Tuning is hard