
Automatic Verification of Data-Centric Business Processes

Alin Deutsch
UC San Diego

Richard Hull
IBM Yorktown Heights

Fabio Patrizi
Sapienza Univ. of Rome

Victor Vianu
UC San Diego

Abstract

We formalize and study business process systems that are centered around ”business artifacts”, or simply
”artifacts”. This approach focuses on data records, known as artifacts, that correspond to key business-
relevant objects, and that flow through a business process specified by a set of services. The artifact-
centric approach has been introduced by IBM, and has enabled significant improvements to the operations of
medium- and large-sized businesses.

In this paper, artifacts carry attribute records and internal state relations, that services can consult and
update. In addition, services can access an underlying database and can introduce new values from an infinite
domain, thus modeling external inputs or partially specified processes described by pre-and-post conditions.
The services are associated to the artifacts using declarative, condition-action style rules.

We consider the problem of statically verifying whether all runs of an artifact system satisfy desirable
correctness properties expressed in a first-order extension of linear-time temporal logic. We map the bound-
aries of decidability for the verification problem and provide its complexity. The technical challenge to static
verification lies in the fact that artifact systems are infinite-state systems, as the domain of the data is infinite.
We identify an expressive class of artifact systems for which verification is nonetheless decidable. Remark-
ably, the complexity of verification is PSPACE-complete, which is no worse than classical finite-state model
checking.

This investigation builds upon previous work on verification of data-driven Web services and ASM trans-
ducers, while addressing significant new technical challenges raised by the artifact model.

1 Introduction

Businesses and other organizations increasingly rely on business process management, and in particular the
management of electronic workflows underlying business processes. While most workflow is still organized
around relatively flat process-centric models, over the past several years a data-centric approach to workflow
has emerged. A watershed paper in this area is [28], which introduces the artifact-centric approach to workflow
modeling. This approach focuses on data records, known as “business artifacts” or simply “artifacts”, that
correspond to key business-relevant objects, their life cycles, and how/when services (a.k.a. tasks) are invoked
on the artifacts. This approach provides a simple and robust structure for workflow, and has been demonstrated
in practice to yield substantial improvements in the implementation of business transformations [4].

From the formal perspective, little is understood about artifact-centric (and other data-centric) workflow.
Citations [15, 16, 6] provide preliminary investigations into the analysis of artifact-centric workflow in restricted
settings. The current paper develops static analysis techniques in the context of substantially richer declarative
artifact-centric workflows, in which each artifact carries, in addition to the data record containing business-
relevant values, a full relational state used in the internal control of the business process. The focus is on
decision problems for a first-order extension of linear-time temporal logic. In general such decision problems are
undecidable, but the paper identifies a large, useful class of workflows for which the complexity of verification
is PSPACE-complete, which is no worse than classical finite-state model checking.

1

Following [7], an artifact-centric workflow model typically focuses on (a) the business artifacts, (b) the
(macro-)life cycle of the artifacts, (c) the services (a.k.a. tasks) that operate on the artifacts, and (d) the mech-
anisms whereby services are associated to the artifacts. In this paper each artifact type will involve a family of
attributes along with one relational state (a simple generalization permits multiple relational states). Intuitively,
the artifact starts with just a few of the attributes defined (initialized), and the invoked services fill in, or over-
write, the artifact’s attributes. In practice, the primary operations of a business may involve tens of artifacts
for small-to-medium-size businesses, and hundreds of artifacts for large businesses. The macro-lifecycle of the
artifacts is intended to capture the key business-relevant stages (or states) in the lifecycle of an artifact. Stage
transitions are typically specified using a finite-state machine, often with a handful to tens of states.

The current paper specifies services and their association to artifacts in a declarative manner, using input
parameters, output parameters, pre-conditions, and post-conditions. This model is inspired by the model of [6],
and more broadly by the field of semantic web services [25] (where post-conditions are called ”conditional
effects”). The use of post-conditions permits non-determinism in the outcome of a service, as is typically the
case, for example, in a business process service in which a human makes a final determination about the value
of an attribute while satisfying certain constraints. Also following [6], in this paper the movement of artifacts
from one stage to another is specified declaratively, in our case via state update rules (known as condition-action
rules in [6]). The model of [6] permits only attributes, and the analysis focuses only on whether these attributes
are defined or undefined (so their value is abstracted away). In the current paper we handle both attributes and
relational states. The service and property specifications manipulate the data values they hold, and can compare
them according to a dense linear order. Further, we include here a static database which can be accessed (but
not updated) during the processing of artifacts by the services’ state update rules and pre- and post-conditions.

The workflow model used in this paper is illustrated with a running example that models a scenario where
a manufacturer fills customer purchase orders, negotiating the price of each item on a case-by-case basis. The
example is introduced in Example 2.4 and presented in full in Appendix A.

This paper considers the problem of statically verifying whether all runs of an artifact system satisfy desir-
able correctness properties expressed in a first-order extension of linear-time temporal logic called LTL-FO .
This language can express a wide variety of properties pertaining to the consistency of the specification (e.g two
Boolean flags are mutually exclusive at every step of the business process), or to the policies implemented by a
business process. For instance, in the running example, one wishes to guarantee the following:

If the customer’s status is not preferred and the credit rating is worse than good, then before accept-
ing an order for a product with final negotiated price lower than the manufacturer’s desired price,
explicit approval from a human executive must be requested.

We also show how other common analysis tasks for business processes can be reduced to verification of LTL-FO
properties.

The main technical challenge to static verification lies in the fact that the artifact systems studied here are
infinite-state systems, as the domain of the data is infinite. In the general case, testing correctness of properties
is undecidable. We map the boundaries of decidability for the verification problem, and identify a class of re-
strictions such that (a) artifact systems and properties that lie within this class are decidable, and (b) relaxing any
of the restrictions leads to undecidability. For the restricted setting, the decision problem is PSPACE-complete.
As will be seen, the running example obeys the restrictions, thus illustrating that they are not prohibitive for
practical scenarios.

Further related work As mentioned above, artifacts and related notions have been discussed in the research
literature for several years now. The specific notion of artifact, along with specification of key stages in its
life-cycle, was first introduced in [28] and was further studied, from both practical and theoretical perspectives,
in [4, 5, 15, 16, 6, 23, 20, 22]. Some key roots of the artifact-centric approach are present in adaptive objects

2

[21], adaptive business objects [26], business entities, and “document-driven” workflow [34]. The notion of
documents as in document engineering [17] is focused on certain aspects of artifacts, namely the artifact data
itself and how it can be used to facilitate communication between sub-organizations in the course of workflow
processing. The Vortex workflow framework [19, 12, 18] is also data centric, and provides a declarative frame-
work for specifying if and when workflow services are to be applied to a given artifact. More recently, [2] has
studied automatic verification in the context of workflow based on Active XML documents.

Work on formal analysis of artifact-centric business processes in restricted contexts has been reported in
[15, 16, 6]. Properties investigated in these studies include reachability [15, 16], general temporal constraints
[16], and the existence of complete execution or dead end [6]. Citations [15, 16] are focused on an essentially
procedural version of artifact-centric workflow, and [6] is the first to study a declarative version. For the variants
considered in each paper, verification is generally undecidable; decidability results were obtained when rather
severe restrictions are placed, e.g., restricting all guards on state transitions to be ”true” [15], restricting to
bounded domains [16, 6], or restricting the language for conditions to refer only to artifacts (and not their
attribute values) [16]. None of the above papers permit an arbitrary external database, separate from the artifacts,
in their frameworks.

The OWL-S proposal [25, 24] describes the semantics of services with input, output, pre-condition, and
post-conditions (known there as conditional effects). In that work, the pre-conditions and effects refer to fluents,
that is predicates whose values can change over time. These are used to model evolving databases, for instance
for flight reservations, bank accounts, and warehouse inventories. The declarative artifact-centric approach to
workflow modeling used here is closely related to that of semantic web services in general, and OWL-S in
particular.

Static analysis for semantic web services is considered in [27], but in a context restricted to finite domains.
The work [10] studies static verification of data-driven Web services that interact with external users through

a Web browser interface and generate Web pages dynamically by queries on an underlying database. The
study identifies decidable cases of the problem of verifying if all runs of a Web service satisfy a correctness
property specified as a sentence in LTL-FO , the language of first order logic extended with linear-time temporal
logic operators, which we adopt also in this paper. Similar extensions have been previously used in various
contexts [13, 1, 32, 10, 11]. The model studied in [10] extends prior formalisms for specifying electronic
commerce applications with additional features that turn out to be essential for describing Web applications.
Its immediate ancestor is the ASM transducer [32, 31], a more remote one is the relational transducer [3]. The
artifact system model could conceptually (if not naturally) be encoded into the extended ASM transducer model
of [10]. However, this would not yield a proof of the results in this paper, because business process modeling
requires two non-trivial extensions. First, runs of artifact systems must be allowed to use infinitely many domain
values in order to model arbitrary inputs from external users or partially specified processes described by pre-
and post-conditions (unlike transducers, where the domain of each run is restricted to the active domain of
the finite database). Second, the underlying domain is ordered, which turns out to be a key feature in writing
practically useful pre- and post-conditions. These extensions render the proof of decidability of verification
considerably more involved.

Paper outline Our model of artifact systems and the language LTL-FO are introduced in Section 2, together
with our running example. Section 3 states the restrictions needed for decidability of verification, and provides
the main decidability result. In Section 4, the restrictions are shown to be tight by considering several relaxations
that lead to undecidability of verification. Applications of the main verification results to other business process
analysis tasks are provided in Section 5. We end with brief conclusions. An Appendix contains the full running
example and most proofs, including the proof of the main decidability result.

3

2 Framework

We introduce here our model and basic definitions and notation.
We assume fixed an infinite, countable domain D equipped with a total dense order ≤ with no endpoints. As

usual, a database schema D consists of a finite set of relation symbols with specified arities. The arity of relation
R is denoted a(R). An instance, or interpretation, over a database schema, is a mapping associating to each
relation symbol R of the schema a finite relation over D, of arity a(R). We assume familiarity with First-Order
logic (FO) over database schemas. Given a schema D, LD denotes the set of FO formulas over D ∪ {=,≤} (=
and ≤ are built-in relations over D). If ϕ(x̄) is an FO formula with free variables x̄, and ū is a tuple over D of
the same arity as x̄, we denote by ϕ(x̄← ū) the sentence obtained by substituting ū for x̄ in ϕ(x̄). When there
is no ambiguity, we sometimes denote ϕ(x̄← ū) simply by ϕ(ū). Note that, since D is infinite, an FO formula
ϕ(x̄) may be satisfied by infinitely many tuples ū over D (so may define an infinite relation). Finiteness and
effective evaluation can be guaranteed by using the active domain semantics, in which the domain is restricted to
the set of elements occurring in the given instance (sometimes augmented with a specified finite set of constants
in D, by default empty). For an instance I , we denote its active domain by adom(I). We assume unrestricted
semantics unless otherwise specified.

The artifact model uses a specific notion of class, schema and instance, defined next.

Definition 2.1 An artifact class is a pair C = 〈R,S〉 where R and S are two relation symbols. An instance of C
is a pair C = 〈R,S〉, where (i) R, called attribute relation, is an interpretation of R containing exactly one tuple
over D, and (ii) S, called state relation, is a finite interpretation of S over D.

We also refer to an artifact instance of class C as artifact instance, or simply artifact when the class is clear
from the context or irrelevant.

Definition 2.2 An artifact schema is a tuple A = 〈C1, . . . , Cn,DB〉 where each Ci = 〈Ri, Si〉 is an artifact
class, DB is a relational schema, and Ci, Cj , and DB have no relation symbols in common for i 6= j.

By slight abuse, we sometimes identify an artifact schema A as above with the relational schema DBA =
DB ∪ {Ri, Si | 1 ≤ i ≤ n}.

An instance of an artifact schema is a tuple of class instances, each corresponding to an artifact class, plus a
database instance:

Definition 2.3 An instance of an artifact schema A = 〈C1, . . . , Cn,DB〉 is a tuple A = 〈C1, . . . , Cn, DB〉,
where Ci is an instance of Ci and DB is an instance of DB over D.

Again by slight abuse, we identify each instance A = 〈C1, . . . , Cn, DB〉 of A with the relational instance
DB ∪ {Ri,Si|1 ≤ i ≤ n} over schema DBA. Let A be an artifact schema and DBA its relational schema.
Given an artifact instance over A, the semantics of formulas in LA is the standard semantics on the associated
relational instance over DBA.

Example 2.4 We illustrate the expressive power of the artifact model by specifying a scenario where a manu-
facturer fills customer purchase orders, negotiating the price of each line item on a case-by-case basis. We focus
on two artifacts manipulated by the negotiation process, ORDER and QUOTE.

During the workflow, the customer repeatedly adds new line items into (or updates existing ones in) the
purchase order modeled by the ORDER artifact. Each line item specifies a product and its quantity. Every tenta-
tive line item spawns a negotiation process, in which manufacturer and customer complete rounds of declaring
ask and bid prices, until agreement is reached or the negotiation fails. The prices at every round are stored in
the QUOTE artifact, which also holds the manufacturer’s initially desired price, the lowest bid he is willing to

4

entertain, and the final negotiated price. Once the negotiation on a tentative line item succeeds, its outcome is
scrutinized by a human executive working for the manufacturer. Upon the executive’s approval, the line item
is included into the purchase order. During the negotiation, the manufacturer consults an underlying database,
which lists information about available products (e.g. manufacturing cost) and about customers (e.g. credit
rating and status).

The corresponding artifact system Γex = 〈A,Σ〉 is partially described here and in Example 2.9 (see Ap-
pendix for the full specification).

The artifact schema is A = 〈ORDER,QUOTE,DB〉, detailed as follows.
DB = 〈PRODUCT,CUSTOMER〉 is the database schema, where:

• PRODUCT(prod id,manufacturing cost,min order qty)
lists product manufacturing cost and minimum order quantity, and

• CUSTOMER(customer id, status, credit rating) lists customer status and credit rating.

ORDER = 〈RO, line items, in process,done〉
is the artifact class containing the information about a customer’s order.

• RO(order#, customer id, need by, li prod, li qty)
is the attribute relation holding the order number, the identifier of the customer who placed the order, the
day it is needed by. The role of attributes li prod and li qty is described later.

• line items(prod id, qty)
is a state relation that acts as a “shopping cart” holding the collection of line items requested so far.

• in process and done
are nullary state relations (Boolean flags) keeping track of the stage the artifact is in. 1

The intention is that, in stage in process, the customer repeatedly updates the shopping cart by filling an
individual, tentative line item into attributes li prod and li qty. Subsequently, this line item is inserted into
line items provided the price negotiation succeeds. When the customer completes the purchase order, the OR-
DER artifact transitions to stage done.

QUOTE = 〈RQ, li quotes, idle,desired price calc,negotiation,approval pending,archive〉
is the artifact class modeling quotes, with:

• RQ(order#, desired price, lowest acceptable price, ask, bid,
final price, approved, li prod, li qty,manufacturing cost)

is the attribute relation.

• li quotes(prod id, qty, price)
is a state relation storing the line item with the final negotiated price quotes.

• idle, desired price calc, negotiation, approval pending, and archive
are nullary state relations keeping track of the stage the artifact is in.

1Artifact class ORDER illustrates an extension of Definition 2.1 that allows several state relations. This extension is for convenience
only: it is easy to show a reduction from multiple-state artifacts to single-state artifacts that preserves our decidability result. The proof
is similar to the proof of Lemma B.1.

5

When inactive, the QUOTE artifact is in state idle, but moves to desired price calc as soon as the customer fills
in the product id and quantity of a line item. In this stage, desired price attribute is set (from the manufacturer’s
point of view), possibly taking into account the need by date attribute in the corresponding ORDER artifact
and the manufacturing cost listed in the PRODUCT database. During the ensuing negotiation stage, the ask
and bid prices are repeatedly set (in attribute ask by the manufacturer, respectively bid by the customer) until a
final price is established and recorded in attribute final price, or the negotiation fails. Final prices may require
approval by a human executive who works for the manufacturer. While approval is awaited, the QUOTE artifact
is in stage approval pending. Approval is granted by setting Boolean attribute approved. Approved final prices
are then archived in state relation li quotes (while the QUOTE artifact is in stage archive). �

We now define the syntax of services. It will be useful to associate to each attribute relation R of an artifact
schema A a fixed sequence x̄R of distinct variables of length a(R).

Definition 2.5 A service σ over an artifact schema A is a tuple σ = 〈π, ψ,S〉 where:

• π, called pre-condition, is a sentence in LA;

• ψ, called post-condition, is a formula in LA, with free variables
{x̄R | R is an attribute relation of a class in A};

• S is a set of state rules containing, for each state relation S of A, one, both or none of the following rules:

– S(x̄)← φ+
S (x̄);

– ¬S(x̄)← φ−S (x̄);

where φ+
S (x̄) and φ−S (x̄) are LA-formulas with free variables x̄ s.t. |x̄| = a(S).

Definition 2.6 An artifact system is a pair Γ = 〈A,Σ〉, where A is an artifact schema and Σ is a non-empty set
of services over A.

We next define the semantics of services. We begin with the notion of possible successor of a given artifact
instance with respect to a service.

Definition 2.7 Let σ = 〈π, ψ,S〉 be a service over artifact schema A. Let A and A′ be instances of A. We say
that A′ is a possible successor of A with respect to σ (denoted A σ

−→ A′) if the following hold:

1. A |= π;

2. A′|DB = A|DB;

3. if ūR is the content of the attribute relation R of A in A′, then A satisfies the post-condition ψ where each
x̄R is replaced by ūR;

4. for each state relation S of A and tuple ū over adom(A) of arity a(S), A′ |= S(ū) iff

A |= (φ+
S (ū) ∧ ¬φ−S (ū)) ∨ (S(ū) ∧ φ+

S (ū) ∧ φ−S (ū)) ∨ (S(ū) ∧ ¬φ+
S (ū) ∧ ¬φ−S (ū))

where φ+
S (ū) and φ−S (ū) are interpreted under active domain semantics, and are taken to be false if the

respective rule is not provided.

6

Note that, according to (2) in Definition 2.7, services do not update the database contents. Instead, the updatable
data is carried by the artifacts themselves, as attribute and state relations. This distinction between the static and
updatable portions of the data is convenient for technical reasons, as it is used in formulating the restrictions
needed for verification (see Section 3). Note that, if so desired, one can make the entire database updatable by
turning it into a state. Also observe that the distinction between state and database is only conceptual, and does
not preclude implementing all relations within the same DBMS.

We next define the notion of run of an artifact system Γ = 〈A,Σ〉. An initial instance of Γ is an artifact
instance over A whose states are empty.

Definition 2.8 A run of an artifact system Γ = 〈A,Σ〉 is an infinite sequence ρ = {ρi}i≥0 of artifact instances
over A (also called configurations) such that:

• ρ0 is an initial instance of Γ;

• for each i ≥ 0, ρi
σ
−→ ρi+1 for some σ ∈ Σ.

A pre-run is a finite sequence {ρi}0≤i≤n satisfying the same conditions as above for i < n. We say that a
pre-run is blocking if its last configuration has no possible successor.

Example 2.9 Continuing Example 2.4, we show how to model the operations allowed on artifacts by the set
Σ of available services. Due to space constraints, we relegate most of the specification of Σ to Appendix A,
focusing here on the service that models the negotiation process. To illustrate the artifact model’s natural ability
to specify processes at different levels of abstraction, we describe the negotiation process at two levels. In a
first, coarser cut, the process is abstracted as service abstract negotiation = 〈πan, ψan,San〉 about which we
only know that the final price is reached when the ask and bid prices coincide, and that it is guaranteed to lie
between the allowed margins stored in attributes desired price and lowest acceptable price of artifact QUOTE.
The specification of this service is relatively simple and given in Appendix A. Alternatively, we show below
service refined negotiation = 〈πrn, ψrn,Srn〉 which refines the negotiation process all the way to the level of
individual negotiation rounds, each of which sets the current ask and bid prices.

Conventions We adopt the following conventions:

(i) We model uninitialized attributes by setting them to the reserved constant ω.

(ii) We model Boolean states by nullary state relations, and drop the parentheses from atoms using them: S()
becomes S. We assume the usual encoding of true as the singleton nullary relation, and false as the empty
nullary relation. In particular, all Boolean states are initially false (since all state relations are initially
empty).

(iii) For convenience, we use the following syntactic sugar for post-conditions: we write post-conditions as
non-Horn rules h(x̄) := b(ȳ) where the head h is a conjunction of atoms over attribute relations in A,
with variables x̄, and the body b is a formula in LA with free variables ȳ, where ȳ ⊆ x̄. The semantics
is that whenever A σ

−→ A′ holds, A′ |= h(x̄ ← ū) for some tuple ū, and A |= b(ȳ ← ū|ȳ). Moreover,
artifact relations not mentioned in h remain unchanged. Clearly, this syntactic sugar can be simulated by
the official post-conditions, and conversely.

We now describe service refined negotiation = 〈πrn, ψrn,Srn〉:
The pre-condition

πrn
.
= negotiation

ensures that the service applies only as long as the Boolean state flag negotiation is set in the QUOTE artifact.
Post-condition ψrn is given as

7

RQ (o, d, l, a, b, f, app, p, q,m) :=
(∃a′, b′ RQ(o, d, l, a′, b′, ω, app, p, q,m) ∧ a′ 6= b′ ∧ l ≤ a ≤ a′ ∧ b′ ≤ b ∧ f = ω)
∨
(RQ(o, d, l, a, b, ω, app, p, q,m) ∧ a = b = f).

According to the first disjunct, the negotiation is well-formed, i.e. the bid never exceeds the ask price, and
in each round, asking prices a never increase while bids b never decrease. Moreover, as long as ask and bid
price differ, the final price remains undefined (equal to ω). Notice that the values of a and b are otherwise
unconstrained, being simply drawn from the infinite domain. This reflects the fact that they are external input
from the manufacturer, respectively customer. The second disjunct states that once ask price a and bid price b
coincide, the final price f is automatically set to the common value.
Srn contains rules that, upon detecting successful negotiation, switch the QUOTE artifact to stage ap-

proval pending if the customer does not enjoy preferred status with excellent credit. If he does, then the
approval is short-circuited and the QUOTE goes directly to stage archive. The negotiation is successful when
the ask and bid prices agree.

approval pending ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, q,m)

∧ ∃c, n RO(o, c, n, p, q) ∧ ¬CUSTOMER(c, ”preferred”, ”excellent”)

archive ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, q,m)

∧ ∃c, n RO(o, c, n, p, q) ∧ CUSTOMER(c, ”preferred”, ”excellent”)

¬negotiation ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m)

Note that state flag negotiation must be set before the state update rules execute (since pre-condition π rn is
satisfied). If neither of the state rule bodies is satisfied, then according to the possible successor semantics, the
negotiation flag remains set, enabling another negotiation round. �

One of the points illustrated by Example 2.9 is that the artifact model is particularly well-suited for express-
ing a wide spectrum of abstraction levels desired in specification. This is shown by the two specifications of
the negotiation process, one refining it down to individual rounds, the other abstracting it to an atomic sub-task
with a post-condition on its outcome. In practice, the motivation for abstraction ranges from lack of information
about an external process provided by an autonomous third party as a black box with pre- and post-execution
guarantees, to modeling non-deterministic processes governed by chance or human agents rather than by pro-
gram. There are also technical reasons, such as the undecidability of verification in the presence of arithmetic
(as is the case in many settings, including ours). In all these cases, abstracted sub-processes can be naturally
modeled as services, leveraging the non-determinism in their post-conditions.

In order to specify temporal properties of runs, we use an extension of linear-time temporal logic (LTL).
Recall that LTL is propositional logic augmented with temporal operators such as X (next), U (until), G (always)
and F (eventually). Essentially, the extension we use, denoted LTL-FO, is obtained from LTL by replacing
propositions by FO statements about individual artifact instances in the run. The different statements may share
variables that are universally quantified at the end. Similar extensions have previously been used in various
contexts [13, 1, 32, 10, 11].

Definition 2.10 The language LTL-FO (first-order linear-time temporal logic) is obtained by closing FO under
negation, disjunction, and the following formula formation rule: If ϕ and ψ are formulas, then Xϕ and ϕUψ
are formulas. Free and bound variables are defined in the obvious way. The universal closure of an LTL-FO
formula ϕ(x̄) with free variables x̄ is the formula ∀x̄ϕ(x̄). An LTL-FO sentence is the universal closure of an
LTL-FO formula.

8

Let A be an artifact schema. An LTL-FO sentence over A is one where each FO component is over DBA.
The semantics of LTL-FO formulas is standard, and we describe it informally. Let Γ = 〈A,Σ〉 be an artifact
system, and ∀x̄ϕ(x̄) an LTL-FO sentence over A. The artifact system Γ satisfies ∀x̄ϕ(x̄) iff every run of Γ
satisfies it. Let ρ = {ρi}i≥0 be a run of Γ, and let ρ≥j denote {ρi}i≥j , for j ≥ 0. Note that ρ = ρ≥0. The run
ρ satisfies ∀x̄ϕ(x̄) iff for each valuation ν of x̄ in D, ρ≥0 satisfies ϕ(ν(x̄)). The latter is defined by structural
induction on the formula. Satisfaction of an FO sentence ψ by ρi is defined in the obvious way. The semantics of
Boolean operators is standard. The meaning of the temporal operators X, U is the following (where |= denotes
satisfaction and j ≥ 0):

• ρ≥j |= Xϕ iff ρ≥j+1 |= ϕ,

• ρ≥j |= ϕUψ iff ∃k ≥ j such that ρ≥k |= ψ and ρ≥l |= ϕ for j ≤ l < k.

Observe that the above temporal operators can simulate all commonly used operators, including F (eventually),
G (always), and B (before, which requires its first argument to hold before its second argument fails). Indeed,
Fϕ ≡ true U ϕ, Gϕ ≡ ¬F(¬ϕ), and ϕBψ ≡ ¬(¬ϕU¬ψ). We use the above operators as shorthand in
LTL-FO formulas whenever convenient.

Note that, as customary in verification, LTL-FO properties of artifact systems concern exclusively their
infinite runs. Thus, blocking finite pre-runs are ignored. In particular, if an artifact system has only blocking
pre-runs (so no proper run) then it vacuously satisfies all LTL-FO formulas. For this and other reasons, one may
wish to know if, for a given artifact system (i) all of its pre-runs are blocking, or (ii) there exists a blocking pre-
run. We consider decidability of these questions at the end of Section 3 (Corollary 3.4) and Section 4 (Corollary
4.3).

Example 2.11 We illustrate desirable properties for the artifact system Γex in Example 2.9. These properties
pertain to the global evolution of Γex, as well as to the consistency of its specification. One such consistency
property requires the state flags in process and done in class ORDER to always be mutually exclusive:

G(¬(in process ∧ done)).

A more data-dependent consistency property requires line item quotes archived in state li quotes of the QUOTE
artifact to pertain only to tentative line items previously input by the customer (into attributes li prod and li qty
of the ORDER artifact), and which underwent successful negotiation and approval. Successful negotiation
occurs when ask, bid and final price coincide and the QUOTE artifact is in state archive:

∀pid, qty, priceG ((∃o, c, n RO(o, c, n, pid, qty) ∧
∃d, l,m RQ(o, d, l, price, price, price, ”yes”, pid, qty,m) ∧ archive)

B

¬li quotes(pid, qty, price)).

Notice the use of the before operator B (requiring its first argument to hold before its second argument fails).
The following property is more semantic in nature, capturing part of the manufacturer’s business model.

It requires that if the customer’s status is not ”preferred” and the credit rating is worse than ”good”, then
before archiving a line item with final negotiated price lower than the manufacturer’s desired price, explicit
approval from a human executive must have been requested. We assume the following ordering on the constants
indicating the credit rating: ”poor” < ”fair” < ”good” < ”excellent”.

ϕ3 : ∀o, c, n, p, q, d, l, f,m, s, r
G ((RO(o, c, n, p, q) ∧ in process ∧RQ(o, d, l, f, f, f, ω, p, q,m) ∧ negotiation ∧ f < d

9

∧ CUSTOMER(c, s, r) ∧ s 6= ”preferred” ∧ r < ”good”)
→ approval pending B ¬(archive ∧ li quotes(p, q, f))

).

Note that ϕ3 involves both artifacts and the underlying database. If the negotiation process is described by
service refined negotiation, then the property happens to be satisfied: indeed, recall from its state rules that this
service requests approval whenever the customer’s status is not preferred and his credit rating is not excellent. In
particular, this applies to customers whose rating is worse than good, according to the above ordering of credit
ratings. �

A detailed specification of all services involved in our running example can be found in Appendix A.

3 Decidable Verification

In this section we establish the main decidability result on verification of artifact systems.
It is easily seen that satisfaction of an LTL-FO formula by an artifact system is generally undecidable,

using Trakhtenbrot’s theorem. To obtain decidability, we introduce a restricted class of artifact systems and
LTL-FO properties, called guarded. This is the analog to artifact systems of the input-boundedness restriction,
first introduced by Spielmann in the context of ASM transducers [32], and subsequently used for Web service
verification [10]. The guarded restriction requires a form of bounded quantification in formulas used in state
update rules and LTL-FO properties. The pre-and-post conditions of services are restricted to be existential.

The guarded restriction is formulated as follows.

Definition 3.1 Let Γ = 〈A,Σ〉 be an artifact system. The set of guarded FO formulas over A is obtained by
replacing in the definition of FO the quantification formation rule by the following:

• if ϕ is a formula, α is an atom using an attribute relation of some artifact of A, x̄ ⊆ free(α), and
x̄ ∩ free(β) = ∅ for every state atom β in ϕ, then ∃x̄(α ∧ ϕ) and ∀x̄(α→ ϕ) are formulas.

An artifact system is guarded iff all formulas used in the state rules of its services are guarded, and all pre-and-
post conditions are ∃∗FO formulas2 in which all state atoms are ground. An LTL-FO sentence overA is guarded
iff all of its FO components are guarded.

Example 3.2 The artifact system Γex in our running example is guarded. This includes the complete speci-
fication in Appendix A, which shows that the guardedness restriction still offers significant expressive power.
For instance, notice that post-condition ψrn is an ∃∗FO formula with no non-ground state atoms (trivially so,
as it mentions no state at all). In addition, in all state rules the quantified variables appear guarded by atoms
using attribute relations RO or RQ. No quantified variables appear in any state atom because no such atoms are
mentioned. See the state rules of service include line item in Appendix A for a less trivial example of guarded
state rules. There, state atoms do occur in the rule body, but only with non-quantified variables. All properties
listed in Example 2.11 are guarded.

For an example of an unguarded state rule, consider a relaxation of the insertion rule in S rn demanding that
executive approval be short-circuited and the archive flag be set for all preferred customers with better than fair
rating:

archive ← ∃o, d, l, a, f, app, p, q,m, r RQ(o, d, l, a, a, f, app, q,m)

∧ ∃c, n RO(o, c, n, p, q) ∧ CUSTOMER(c, ”preferred”, r) ∧ r > ”fair”.

2Note that these formulas do not have to obey the restricted quantification formation rule.

10

The problem here is that quantified variable r does not appear in any attribute atom (indeed it cannot, since
neither RO nor RQ have any rating attribute). While our undecidability results in Section 4 imply that not every
unguarded rule or property can be equivalently rewritten into a guarded one, it is often possible to do so by
slightly modifying the specification, such that it preserves the intended business process semantics, at the cost
of widening the attribute relation. This happens to apply here. One can simply extend the attribute schema ofRO

to include the customer’s rating, in addition to the originally included customer id. The rating attribute would
be set at the same time as the customer id attribute. The latter is set by service initiate order in Appendix A,
using a guarded post-condition that would remain guarded after the proposed extension. �

The main result on decidability of verification for artifact systems is the following.

Theorem 3.3 It is decidable, given a guarded artifact system Γ and a guarded LTL-FO formula ϕ, whether
every run of Γ satisfies ϕ. Furthermore, the complexity of the decision problem is PSPACE-complete for fixed
arity schemas, and EXPSPACE otherwise.

The main challenge in establishing the above result is that artifact systems are infinite-state systems, due to
the presence of unbounded data. To deal with this, the key idea is to develop a concise, symbolic representation
of equivalence classes of runs of Γ, called pseudoruns, that retain just the information needed to check satis-
faction of ϕ, and can be generated in PSPACE without explicitly constructing any actual run or database. The
high-level structure of the proof is similar to the one for decidability of verification for extended ASM transduc-
ers [10]. However, the result for the artifact model substantively extends previous ones in two significant ways:
(i) runs of artifact systems may use infinitely many domain values (unlike extended ASM transducers where the
domain of each run is restricted to the active domain of the finite database), and (ii) the underlying domain is
ordered. These extensions require much more care in developing the pseudorun technique, and render the proof
of decidability considerably more difficult. This proof is provided in Appendix B.

Finally, we consider the issue of blocking pre-runs. As remarked in Section 2, LTL-FO properties of artifact
systems concern only their (infinite) runs and ignore blocking pre-runs. In particular, if an artifact system has
only blocking pre-runs (so no proper run) then it vacuously satisfies all LTL-FO formulas. It therefore becomes
of interest to know whether all pre-runs of an artifact system are blocking. Moreover, blocking may also be of
interest for reasons specific to the application (see also discussion in Section 5). We can show the following.

Corollary 3.4 It is decidable, given a guarded artifact system Γ, whether all pre-runs of Γ are blocking. Fur-
thermore, the complexity is PSPACE for fixed-arity schemas, and EXPSPACE otherwise.

Proof: The result follows immediately from Theorem 3.3. Indeed, all pre-runs of Γ are blocking iff Γ has no
(infinite) runs iff Γ |= false. The latter is decidable with the stated complexities by Theorem 3.3. �

One may also wish to know if a given artifact system has some blocking pre-run. Interestingly, this turns out
to be undecidable for guarded artifact systems (see Corollary 4.3).

4 Boundaries of Decidability

In this section we consider several variations of our artifact model and relaxations of the guarded conditions and
show that they lead to undecidability of verification. This suggests that the restrictions we presented in order
to ensure decidability are quite tight. Due to space constraints, the presentation of the alternative models is
informal.

11

Attributes versus states We first revisit the distinction between the attribute relation R and the state relation S
in artifact classes C = 〈R,S〉. One might legitimately wonder if the separate treatment is relevant to verification.
We next show that this is indeed the case. More precisely, consider a modification of the artifact model where
the state S is treated in the same way as R, except that R holds a single tuple while S holds an entire relation.
In particular, in the definition of a service using artifact class C = 〈R,S〉:

• the pre-and-post conditions of the service are ∃∗FO formulas using R, S and the database (with S-atoms
no longer restricted to be ground as previously);

• as before, the initial value of S is empty;

• there are separate post-condition formulas ψR and ψS for R and S, defining their contents in the output
(R consists, as before, of one arbitrary tuple satisfying ψR, while S consists of the set of tuples satisfying
ψS , with active domain semantics to guarantee finiteness).

We refer to R as the tuple attribute set of C and to S as the relational attribute set of C . We refer to such artifact
systems as hybrid-attribute. Note that, in this model, there are no longer separate state relations. Since there
are no states, the guarded restriction on hybrid-attribute services now simply amounts to the ∃∗FO form of the
pre-and-post conditions. The guarded restriction for LTL-FO properties remains unchanged. We can show the
following (the proof is by reduction from the Post Correspondence Problem, see Appendix C).

Theorem 4.1 It is undecidable, given a guarded hybrid-attribute artifact system Γ and guarded LTL-FO for-
mula ϕ, whether Γ |= ϕ. Moreover, this holds even for singleton artifact systems whose relational attribute set
consist of a single attribute, and for a fixed LTL-FO formula ϕ with no variables.

Relaxing the guarded restrictions We now consider several relaxations of the guarded restrictions. It turns
out that even very small such relaxations lead to undecidability of verification. Specifically, we consider the
following: (i) allowing non-ground state atoms in pre-and-post conditions, (ii) allowing state projections in
state update rules (a simple form of un-guarded quantification), (iii) allowing un-guarded quantification in the
LTL-FO property, and (iv) extending LTL-FO with path quantifiers.

We can show that each of the relaxations (i)-(iv) leads to undecidability of verification. The proof of (i) is
similar to that of Theorem 4.1. The proofs of (ii) and (iii) are by reduction from the implication problem for
functional and inclusion dependencies, known to be undecidable [9]. The proof of (iv) is by reduction from
validity of ∃∗∀∗FO sentences, also known to be undecidable [8]. The proofs of (ii)-(iv) can be easily adapted
from analogous results obtained for extended ASM transducers [10]. We therefore omit the details.

Functional dependencies It is natural to ask whether the decidability of verification holds under the assump-
tion that the database satisfies certain integrity constraints. Unfortunately, we show that even simple key depen-
dencies lead to undecidability.

Theorem 4.2 It is undecidable, given a guarded singleton artifact system Γ, a set of functional dependencies F
over DB, and a guarded LTL-FO sentence ϕ, whether ρ |= ϕ for every run ρ of Γ on a database satisfying F .
Moreover, this holds even if DB consists of one binary and one unary relation, and F consists of a single key
constraint on the binary relation.

The proof is done by reduction from the PCP, similarly to Theorem 4.1 (details are omitted).

12

Existence of a blocking pre-run Recall the question raised in Section 2: does an artifact system have (i)
only blocking pre-runs, or (ii) some blocking pre-run? We showed in Section 3 that (i) is decidable for guarded
artifact systems (Corollary 3.4). Interestingly, (ii) turns out to be undecidable.

Corollary 4.3 It is undecidable, given a guarded artifact system Γ, whether Γ has some blocking pre-run.

The result is shown similarly to Theorems 4.1 and 4.2, by reduction from the PCP. The key idea is to first
search for a match to the PCP (without assurance that the key dependency assumed in Theorem 4.2 is satisfied),
and in case of success make continuance of the run contingent upon violation of the dependency. This reduces
the existence of a solution to the PCP to the existence of a blocking pre-run.

Order versus successor Recall that decidability of verification holds under the assumption that the domain D
is countable and equipped with a dense, total order ≤ with no endpoints. If≤ is replaced by a successor relation
on D, verification becomes undecidable. The proof is, again, by reduction from the PCP.

We note that it remains open whether verification remains decidable if some of the assumptions on ≤ do not
hold, for instance if ≤ is not dense.

5 Further Applications

We next discuss several problems previously raised in the context of artifact systems, to which our results on
verification can be beneficially applied.

Business rules We consider an extension of the artifact formalism in support of service reuse and customiza-
tion. In practice, services are often provided by autonomous third-parties, who typically strive for wide ap-
plicability and impose as unrestrictive pre-conditions as possible. In contrast, the designer who incorporates
third-party services into the business process often requires more control over when these services apply, in
the form of more restrictive pre-conditions. Such additional control may also be needed to ensure compliance
with business regulations formulated by third parties, independently of the specific application. To address such
needs, [6] introduces business rules, which are conditions that can be super-imposed on the pre-conditions of
existing services without changing their implementation.

We adopt the notion here and formalize it as follows. Given an artifact system Γ = 〈A,Σ〉, we associate a
set B = {βσ | σ ∈ Σ} of business rules to the services in Σ. A business rule is a sentence in LA, just like a
service pre-condition.

For instance, we revisit our running example and assume that order shipment is modeled by the ship service,
whose pre-condition only checks that the ORDER artifact is in state done. We also assume the existence of a
collect payment service, which applies when the ORDER is in state done. Finally, we assume that the ORDER
artifact is extended with a paid boolean state flag which is set by the collect payment service. Now we wish
to super-impose the following business rule, which implements the policy that only platinum customers with
excellent credit may get their order shipped before payment is received:

βship : ∃o, c, n, p, s, r RO(o, c, n, p, q) ∧ CUSTOMER(c, s, r) ∧ (s = ”platinum” ∧ r = ”excellent” ∨ paid).

Verification under business rules The verification problem for artifact system Γ and property ϕ under busi-
ness rules B, denoted Γ |=B ϕ, means checking that every run of Γ′ satisfies ϕ, where Γ′ is obtained by adding
each business rule as a pre-condition conjunct to its corresponding service in Γ. We say that a business rule
is guarded if it is guarded when viewed as a service pre-condition. It follows immediately as a corollary of
Theorem 3.3 that verification under B is decidable if Γ, ϕ and all business rules in B are guarded.

13

A related problem concerns incremental verification under business rules. Note that, if Γ |= ϕ, then Γ |=B ϕ.
However, Γ 6|= ϕ does not imply that Γ 6|=B ϕ. Thus, properties such as reachability of a configuration satisfying
some desired property are not inherited when business rules are added. It is of interest whether such properties
can be verified incrementally; however, we do not address this here.

Redundant business rules Towards streamlining the specification, a desirable goal is the removal of redun-
dant business rules. This involves checking whether, given an artifact system Γ = 〈A,Σ〉, a new business rule
β associated to some service σ ∈ Σ has any effect on Γ, i.e. excludes at least one of its runs. The latter problem
amounts to verifying that at any point in a run of Γ, the pre-condition π of σ implies β: Γ |= G(π → β). If
Γ is guarded, and β is guarded in the sense of guarded FO components of LTL-FO properties, then, again as a
corollary of Theorem 3.3, checking if β has an effect on Γ is decidable. Indeed, if π is guarded, then we have
π
.
= ∃x̄ f(x̄) with f a quantifier-free formula in LA. Then

Γ |= G(∃x̄f(x̄)→ β) iff Γ |= G(∀x̄¬f(x̄) ∨ β) iff Γ |= ∀x̄G(¬f(x̄) ∨ β)
︸ ︷︷ ︸

ϕ

where ϕ is a guarded LTL-FO property if β is. For example, βship above is guarded.

Redundant attributes Another design simplification consists of redundant attribute removal, a problem raised
in [6]. We formulate this as follows. We would like to test whether there is a way to satisfy a property ϕ of
runs without using one of the attributes, say a, of artifact A. Checking redundancy of a reduces to the following
verification problem:

Γ 6|= ϕ→ F(∃x̄∃a RA(x̄, a) ∧ a 6= ω)
︸ ︷︷ ︸

ϕ′

where we assume wlog that a is last in A’s attribute relation RA. Recall from Section 2 the convention of
representing undefined attributes using a constant ω. The argument of the temporal operator F (eventually)
checks that attribute a is defined. If ϕ is guarded and has no global variables (i.e. its FO components are all
sentences), then ϕ′ is a guarded LTL-FO property. Therefore Theorem 3.3 applies, yielding decidability.

Verifying termination properties Recall that our semantics of artifact systems and LTL-FO properties ig-
nores blocking runs. However, in some applications, one would like to verify properties relating to termination.
As discussed in Section 3, it is decidable if all pre-runs of an artifact system are blocking (Corollary 3.4). How-
ever, it may be desirable to verify more expressive properties involving blocking configurations. To this end,
one can modify the semantics to render all runs infinite by repeating forever blocking configurations, whenever
reached. It can be shown that our results continue to hold with this semantics. Note that one can state, within a
guarded LTL-FO property, that a configuration of a guarded artifact system is blocking (all variables in negations
of the ∃∗FO pre-conditions become globally quantified universally).

6 Conclusions

In this paper, we introduce the artifact system model, which formalizes a business process modeling paradigm
that has recently attracted the attention of both the industrial and research communities. We study the problem
of automatic verification of artifact systems, with the goal of increasing confidence in the correctness of such
business processes.

14

All prior versions of the artifact model are inherently data-aware, being essentially evolved dataflow models.
The version we consider extends prior models, taking significant additional steps towards data-awareness. It
includes an underlying database which can be consulted by the services, and equips artifacts with updatable state
relations. The service and property specifications allow sophisticated manipulation of data values via first-order
formulae over the attributes and state of artifacts, the underlying database, and an infinite, ordered underlying
domain. Data awareness raises a significant challenge compared to classical finite-state model checking, by
turning artifact systems into infinite-state systems, whose verification problem is notoriously difficult.

We trace the boundaries of decidability for verification and we identify the guarded restriction, defining a
practically appealing and fairly tight class of artifact systems and properties for which verification is decidable in
PSPACE. This complexity is the best one can hope for, given that finite-state model checking is already PSPACE-
complete. Our decidability result is significantly more difficult than the previous results of [32, 10] for ASM
transducers and Web services, because each run is allowed to use infinitely many values from an underlying
ordered domain. This extension is critical to the artifact framework, in order to adequately model arbitrary
external input and partially specified processes given by pre- and post-conditions. Finally, we show that the
verification techniques can also be leveraged to solve other static analysis tasks previously formulated for the
artifact framework.

Our results are enabled by a mix of techniques from logic and model checking. We believe them to be of
interest to the database, computer-aided verification, and business process communities.

References

[1] S. Abiteboul, L. Herr, and J. V. den Bussche. Temporal versus first-order logic to query temporal databases.
In Proc. ACM PODS, pages 49–57, 1996.

[2] S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of Active XML systems. In Proc. Intl. Symp. on
Principles of Database Systems (PODS), pages 221–230, 2008.

[3] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers for electronic commerce. JCSS,
61(2):236–269, 2000. Extended abstract in PODS 98.

[4] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu. Artifact-centered operational
modeling: Lessons from customer engagements. IBM Systems Journal, 46(4):703–721, 2007.

[5] K. Bhattacharya et al. A model-driven approach to industrializing discovery processes in pharmaceutical
research. IBM Systems Journal, 44(1):145–162, 2005.

[6] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis of artifact-centric
business process models. In Proc. Int. Conf. on Business Process Management (BPM), pages 288–304,
2007.

[7] K. Bhattacharya, R. Hull, and J. Su. A Data-centric Design Methodology for Business Processes. In
J. Cardoso and W. van der Aalst, editors, Handbook of Research on Business Process Management. 2009.
to appear.

[8] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.

[9] A. K. Chandra and M. Vardi. The implication problem for functional and inclusion dependencies is unde-
cidable. SIAM J. Comp., 14(3):671–677, 1985.

15

[10] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web applications. JCSS,
73(3):442–474, 2007.

[11] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicating data-driven web services. In
Proc. Intl. Symp. on Principles of Database Systems (PODS), pages 90–99, 2006.

[12] G. Dong, R. Hull, B. Kumar, J. Su, and G. Zhou. A framework for optimizing distributed workflow
executions. In Proc. Intl. Workshop on Database Programming Languages (DBPL), pages 152–167, 1999.

[13] E. A. Emerson. Temporal and modal logic. In J. V. Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, pages 995–1072. North-Holland Pub. Co./MIT Press,
1990.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[15] C. E. Gerede, K. Bhattacharya, and J. Su. Static analysis of business artifact-centric operational models.
In IEEE International Conference on Service-Oriented Computing and Applications, 2007.

[16] C. E. Gerede and J. Su. Specification and verification of artifact behaviors in business process models. In
Proceedings of 5th International Conference on Service-Oriented Computing (ICSOC), Vienna, Austria,
September 2007.

[17] R. Glushko and T. McGrath. Document Engineering: Analyzing and Designing Documents for Business
Infomratics and Web Services. MIT Press, Cmabridge, MA, 2005.

[18] R. Hull, F. Llirbat, B. Kumar, G. Zhou, G. Dong, and J. Su. Optimization techniques for data-intensive
decision flows. In Proc. IEEE Intl. Conf. on Data Engineering (ICDE), pages 281–292, 2000.

[19] R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou. Declarative workflows that support
easy modification and dynamic browsing. In Proc. Int. Joint Conf. on Work Activities Coordination and
Collaboration, 1999.

[20] S. Kumaran, R. Liu, and F. Y. Wu. On the duality of information-centric and activity-centric models of
business processes. In Proc. Intl. Conf. on Advanced Information Systems Engineering (CAISE), 2008.

[21] S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran, and R. Das. ADoc-oriented programming. In Symp. on
Applications and the Internet (SAINT), pages 334–343, 2003.

[22] J. Küster, K. Ryndina, and H. Gall. Generation of BPM for object life cycle compliance. In Proceedings
of 5th International Conference on Business Process Management (BPM), 2007.

[23] R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling business contexture and behavior using business artifacts.
In CAiSE, volume 4495 of LNCS, 2007.

[24] D. Martin et al. OWL-S: Semantic markup for web services, W3C Member Submission, November 2003.

[25] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems, 16(2):46–53,
2001.

[26] P. Nandi and S. Kumaran. Adaptive business objects – a new component model for business integration.
In Proc. Intl. Conf. on Enterprise Information Systems, pages 179–188, 2005.

[27] S. Narayanan and S. McIlraith. Simulation, verification and automated composition of web services. In
Intl. World Wide Web Conf. (WWW2002), 2002.

16

[28] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification. IBM Systems
Journal, 42(3):428–445, 2003.

[29] E. L. Post. Recursive unsolvability of a problem of Thue. J. of Symbolic Logic, 12:1–11, 1947.

[30] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with applica-
tions to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

[31] M. Spielmann. Abstract State Machines: Verification problems and complexity. Ph.D. thesis, RWTH
Aachen, 2000.

[32] M. Spielmann. Verification of relational transducers for electronic commerce. JCSS., 66(1):40–65, 2003.
Extended abstract in PODS 2000.

[33] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Symp.
on Logic in Computer Science, 1986.

[34] J. Wang and A. Kumar. A framework for document-driven workflow systems. In Business Process Man-
agement, pages 285–301, 2005.

17

Appendix

A Running Example

We present here our full running example. We model a scenario where a manufacturer fills customer purchase
orders, negotiating the price of each line item on a case-by-case basis. We focus on two artifacts manipulated
by the negotiation process, ORDER and QUOTE. During the workflow, the customer repeatedly adds new line
items into (or updates existing ones in) the purchase order modeled by the ORDER artifact. Each line item
specifies a product and its quantity. Line items are first tentatively filled in the ORDER attributes li prod and
li qty. Every tentative line item spawns a negotiation process, in which manufacturer and customer complete
rounds of declaring ask and bid prices, until agreement is reached or the negotiation fails. The prices at every
round are stored in the QUOTE artifact, which also holds the manufacturer’s initially desired price, the lowest
bid he is willing to entertain, and the final negotiated price. Once the negotiation on a tentative line item
succeeds, its outcome is scrutinized by a human executive working for the manufacturer. Upon the executive’s
approval, the line item is included into the purchase order (by insertion into the ORDER state line items), and
the final price is archived (in the QUOTE state li quotes). During the negotiation, the manufacturer consults
an underlying database, which lists information about available products (e.g. manufacturing cost) and about
customers (e.g. credit rating and status).

The corresponding artifact system Γex = 〈A,Σ〉 is formally described below. As a font convention, we use
R to refer to an artifact’s attribute relation and S for state relations.

The artifact schema is A = 〈ORDER,QUOTE,DB〉, detailed as follows.

1. DB = 〈PRODUCT,CUSTOMER〉 is the database schema, where:

• PRODUCT(prod id,manufacturing cost,min order qty)
is the relation containing products and production information, and

• CUSTOMER(customer id, status, credit rating)
contains information about customers, such as customer status and credit rating.

2. ORDER = 〈RO, line items, in process,done
︸ ︷︷ ︸

SO

〉

is the artifact class containing the information about a customer’s order.

• RO(order#, customer id, need by, li prod, li qty)
is the attribute relation holding the order number, the identifier of the customer who placed the order,
the day it is needed by. The role of attributes li prod and li qty is described below.

• line items(prod id, qty)
is a state relation that acts as a “shopping cart” holding the collection of line items requested so far.

• in process and done
are nullary state relations (boolean flags) keeping track of the stage the artifact is in. 3

The intention is that, in stage in process, the customer repeatedly updates the shopping cart by specifying
an individual, tentative line item described by attributes li prod and li qty. Subsequently, this line item is

3Artifact class ORDER illustrates an extension of Definition 2.1 that allows several state relations. This extension is for convenience
only: it is easy to show that it provides no additional expressive power and preserves our decidability results. Indeed, given artifact
system Γ with multiple states per artifact and LTL-FO sentence ϕ, we can construct in polynomial time artifact system Γ

′ and sentence
ϕ

′ such that Γ |= ϕ iff Γ
′ |= ϕ

′. Moreover, if Γ and ϕ are guarded, then so are Γ
′ and ϕ

′. The proof is similar to the proof of
Lemma B.1.

18

inserted into, deleted from, or replaces in line items an item with the same prod id, provided the price
negotiation succeeds. When the customer completes the purchase order, the ORDER artifact transitions
to stage done.

3. QUOTE = 〈RQ, li quotes, idle,desired price calc,negotiation,approval pending,archive
︸ ︷︷ ︸

SQ

〉

is the artifact class modeling quotes, with:

• RQ(order#, desired price, lowest acceptable price, ask, bid,
final price, approved, li prod, li qty,manufacturing cost)

is the attribute relation.

• li quotes(prod id, qty, price)
is a state relation holding the final negotiated price quotes for the line items in the corresponding
ORDER artifact.

• idle, desired price calc, negotiation, approval pending, archive
are nullary state relations.

When inactive, the QUOTE artifact is in state idle, but moves to desired price calc as soon as the
customer fills in the product id and quantity of a line item. In this stage, desired price attribute is set
(from the manufacturer’s point of view), possibly taking into account the need by date attribute in the
corresponding ORDER artifact and the manufacturing cost listed in the PRODUCT database. During the
ensuing negotiation stage, the ask and bid prices are repeatedly set (in attribute ask by the manufacturer,
respectively bid by the customer) until a final price is established and recorded in attribute final price,
or the negotiation fails. Final prices may require approval by a human executive to whom the negotiator
reports. While approval is awaited, the QUOTE artifact is in stage approval pending. Approval is
granted by setting boolean attribute approved. Approved final prices are then archived in state relation
li quotes (while the QUOTE artifact is in stage archive).

The operations allowed on artifacts are modeled by the set Σ of available services, summarized below.

• Service initiate order = 〈πio, ψio,Sio〉 initializes the ORDER artifact, modeling the input of the order
number and customer id by the manufacturer, and the need-by date by the customer.

• Service add or modify line item = 〈πam, ψam,Sam〉 models the customer’s choice of a tentative line
item to be added to the purchase order, or to replace another line item for the same product. The service
records this choice in attributes li prod and li qty of the ORDER artifact, and initializes the QUOTE
artifact in view of the upcoming negotiation. This involves copying the order number and line item
information from ORDER to QUOTE, and filling the QUOTE’s manufacturing cost attribute with the
corresponding value looked up in the PRODUCT database.

• Service include line item = 〈πil, ψil,Sil〉 includes into the purchase order the current tentative line
item, by storing it in ORDER state line items. The corresponding final negotiated price is archived in
QUOTE state li quotes.

• Service commit order = 〈πco, ψco,Sco〉 simply switches the ORDER artifact to the done stage, which
disables any further line item modifications. This service models the customer’s non-deterministic deci-
sion to finalize the purchase order.

19

• Service set quote interval = 〈πsq, ψsq,Ssq〉 sets the desired price and lowest acceptable price at-
tributes of the QUOTE artifact to frame the subsequent negotiation. This service abstracts a complex
sub-task, possibly taking into account the ORDER’s need by attribute, the manufacturer’s desired profit
margin, the customer’s status, and input from a human manager.

• Service quote approval = 〈πqa, ψqa,Sqa〉models the human supervisor who reviews the quote on behalf
of the manufacturer. The process is a black box, about which is only known that it switches the QUOTE
artifact to archive stage, and it sets the approved attribute to either ”yes” or ”no”.

To showcase the artifact model’s natural ability to specify processes even partially, we describe the negotia-
tion process at two levels of abstraction.

• In a first, coarser cut, the process is abstracted as service abstract negotiation = 〈πan, ψan,San〉 about
which we only know that the final price is reached when the ask and bid prices coincide, and that it is guar-
anteed to lie between the allowed margins stored in attributes desired price and lowest acceptable price
of artifact QUOTE.

• Alternatively, we use service refined negotiation = 〈πrn, ψrn,Srn〉 to refine the negotiation process all
the way to the level of individual negotiation rounds, each of which sets the current ask and bid prices.

Conventions We adopt the following conventions:

(i) We model uninitialized attributes by setting them to the reserved constant ω.

(ii) We model Boolean states by nullary state relations, and drop the parentheses from atoms using them: S()
becomes S. We assume the usual encoding of true as the singleton nullary relation, and false as the empty
nullary relation. In particular, all Boolean states are initially false (since all state relations are initially
empty).

(iii) For convenience, we use the following syntactic sugar for post-conditions: we write post-conditions as
non-Horn rules h(x̄) := b(ȳ) where the head h is a conjunction of atoms over attribute relations in A,
with variables x̄, and the body b is a formula in LA with free variables ȳ, where ȳ ⊆ x̄. The semantics
is that whenever A σ

−→ A′ holds, A′ |= h(x̄ ← ū) for some tuple ū, and A |= b(ȳ ← ū|ȳ). Moreover,
artifact relations not mentioned in h remain unchanged. Clearly, this syntactic sugar can be simulated by
the official post-conditions, and conversely.

Service initiate order = 〈πio, ψio,Sio〉 initializes the ORDER artifact, where:

• πio
.
= ¬in process,

i.e. the service applies when the ORDER artifact is not used to process another order;

• The post-condition ψio given by

RO(o, c, n, ω, ω) := o 6= ω ∧ n 6= ω ∧ ∃r, s CUSTOMER(c, s, r)

guarantees that the attributes order#, customer id and need by are initialized (set distinct from ω). By the
semantics of post-conditions, the pick of o, c, n is non-deterministic. The pick of nmodels the customer’s
input, while that of o models the assignment of an order number by the manufacturer. Note that no further
constraints are imposed on these values, they are simply picked from the infinite domain. In contrast, the
customer c must be one of the existing customers listed in the database relation CUSTOMER. The pick
of c also models the manufacturer’s input.

The tentative line item’s price p and quantity q are left uninitialized (they equal ω) and will be set by the
customer during an activity modeled by service add or modify line item below.

20

• The state rules in S io include the following:

– in process← true ,
an insertion rule that sets the in process boolean flag.

– ¬done← true ,
a deletion rule that resets boolean state flag done, ensuring it is mutually exclusive with in process.
(it is the responsibility of all other services operating on ORDER to keep them so
– see add or modify line item below).

No rule refers to state relation line items, as no line item exists yet.

Service add or modify line item models the customer’s choice of a tentative line item to be added to the
purchase order, or to replace another line item for the same product. The service affects both the ORDER and
the QUOTE artifact, and it is given as 〈πam, ψam,Sam〉, where:

• πam
.
= ∃o, c, n in process ∧RO(o, c, n, ω, ω) ∧ idle ∧RQ(ω, ω, ω, ω, ω, ω, ω, ω, ω, ω),

i.e. the service applies only if the ORDER artifact is in the in process stage, no other line item is
currently being processed, and if the QUOTE artifact is currently unused (in the idle stage, with all
attributes uninitialized).

• The post-condition ψam is

RO(o, c, n, p, q) ∧RQ(o, ω, ω, ω, ω, ω, ω, p, q,m) :=
∃q′ RO(o, c, n, ω, ω) ∧ p 6= ω ∧ q 6= ω ∧ q ≥ q′ ∧ PRODUCT(p,m, q′)

Note that the customer’s input of product id p and quantity q is modeled as a non-deterministic pick from
the infinite domain. The picked p must appear in the PRODUCT catalog stored in the database. The
quantity q is less restricted: we only know that it is defined (q 6= ω) and, reflecting the manufacturer’s
policy, it exceeds the minimum-order quantity q ′ listed in the PRODUCT catalog.

According to the post-condition, the service reacts as follows to the customer’s input of the tentative line
item. It stores the values p and q into the attributes li prod, li qty of the ORDER artifact. Note that
attributes order#, customer id and need by remain unchanged. The service also initializes the order#
attribute of the QUOTE artifact to refer to the corresponding order, and also stores in it p, q and the
manufacturing cost m for product p, which is looked up in the database catalog PRODUCT. The QUOTE
artifact’s remaining attributes are left undefined, to be set during negotiation.

• Sam contains no ORDER state rule as the order’s state is left unchanged. It contains the following state
rules that move the QUOTE artifact to the desired price calc stage, which enables the sub-task of quote
negotiation: insertion rule

desired price calc← true

and deletion rule
¬idle← true.

Service include line item = 〈πil, ψil,Sil〉 includes into the purchase order the current tentative line item,
by storing it in ORDER state line items. The corresponding final negotiated price is archived in QUOTE state
li quotes. We have:

21

• The pre-condition

πil
.
= in process ∧ ∃o, c, n, p, q RO(o, c, n, p, q) ∧ o 6= ω ∧ c 6= ω ∧ n 6= ω ∧ p 6= ω ∧ q 6= ω ∧

∃d, l, f,m RQ(o, d, l, f, f, f, ”yes”, p, q,m) ∧ archive

ensures that the service applies only if a current line item p, q exists, the ORDER artifact is in stage
in process, and the QUOTE artifact lists a successful and approved negotiation for this line item and
order (notice the common occurrence of o, p, q in both the QUOTE and the ORDER atoms). Successful
negotiation occurs when the ask, bid and final price coincide, and the artifact is in state archive. The final
price is approved when the approved attribute is set to “yes”.

• The post-condition ψil given by

RO(o, c, n, ω, ω) ∧RQ(ω, ω, ω, ω, ω, ω, ω, ω, ω, ω) := ∃p′, q′ RO(o, c, n, p′, q′)

guarantees that, regardless of the current value p′, q′ of the line item, in the successor ORDER artifact
the values are reset to undefined (ω), to make room for the next tentative line item. Notice that the
ORDER attributes order#, customer id and need by are preserved. The QUOTE attributes are all reset,
in preparation for the next negotiation.

• The state rules in S il include the following:

– The state insertion rule

line items(p, q)← ∃o, c, n RO(o, c, n, p, q)

operates on artifact ORDER, inserting the values of attributes li prod and li qty into state relation
line items.
The state deletion rule

¬line items(p, q)← ∃o, c, n, q′ RO(o, c, n, p, q′) ∧ line items(p, q)

deletes any other entry pertaining to the same product p (if any). Recall that, according to the
possible successor definition, if state line items already contains an entry for product p, the com-
bined effect of the insertion and deletion rule is that of updating the quantity of product p to the
latest customer-provided (and successfully negotiated) value. If no prior entry for p exists, then the
deletion rule has no effect.

– The final negotiated price for this line item is archived in QUOTE state li quotes by the following
insertion rule:

li quotes(p, q, f)← ∃o, d, l,m RQ(o, d, l, f, f, f, ”yes”, p, q,m).

The following insertion and deletion rules move the QUOTE artifact to state idle, signaling its avail-
ability for a new negotiation sub-task:

idle← true and
¬archive← true .

Service commit order = 〈πco, ψco,Sco〉 simply switches the ORDER artifact to the done stage, which
disables any further line item modifications. This service models the customer’s non-deterministic decision to
finalize the purchase order.

22

• πco
.
= in process ∧ ∃o, c, n, p, q RO(o, c, n, p, q) ∧ p = ω ∧ q = ω,

i.e. the full order can be committed only if no tentative line item is still being processed (which would
make p 6= ω, q 6= ω).

• ψco is given by
RO(o, c, n, p, q) := RO(o, c, n, p, q)

i.e. the artifact’s attributes do not change.

• Sco contains only the rules
in process← false and
done← true .

The following services model the negotiation process.
Service set quote interval sets the desired price and lowest acceptable price attributes of the QUOTE

artifact to frame the subsequent negotiation. This service abstracts a complex sub-task, possibly taking into
account the ORDER’s need by attribute, the manufacturer’s desired profit margin, the customer’s status, and
input from a human manager.

set quote interval = 〈πsq, ψsq,Ssq〉, where:

• πsq
.
= desired price calc.

• Post-condition ψsq given by

RQ(o, d, l, d, ω, ω, ω, p, q,m) := d 6= ω ∧ l 6= ω ∧ d ≥ l ≥ m ∧RQ(o, ω, ω, ω, ω, ω, ω, p, q,m)

models only what is known about the quote generation procedure viewed as a black box: namely that the
desired price is higher than the lowest acceptable one, which in turn exceeds the manufacturing cost. It
also sets the initial asking price to the desired price in preparation for the negotiation stage.

• The rules in Ssq simply switch the artifact to the negotiation stage, and are omitted.

To showcase the artifact model’s natural ability to specify processes even partially, we describe the negotia-
tion process at two levels of abstraction.

In a first, coarser cut, the process is abstracted as service abstract negotiation = 〈πan, ψan,San〉 about
which we only know that the final price is reached when the ask and bid prices coincide, and that it is guaranteed
to lie between the allowed margins stored in attributes desired price and lowest acceptable price of artifact
QUOTE.

• πan = negotiation,
since the process can only start when the QUOTE artifact is ready, which is signaled by setting this state
flag.

• Post-condition ψan, given as

RQ(o, d, l, f, f, f, app, p, q,m) := ∃a′, b′, f ′ RQ(o, d, l, a′, b′, f ′, app, p, q,m) ∧ l ≤ f ≤ d

guarantees that the final price f agrees with the final ask and bid prices regardless of their initial values
a′, b′, and that f lies between the desired price d and the lowest acceptable price l.

• We omit the rules in San, which move the artifact to state approval pending.

23

Alternatively, we can refine the negotiation process all the way to the level of individual negotiation rounds,
each of which sets the current ask and bid prices. A post-condition ensures that the negotiation is well-formed,
i.e. the bid never exceeds the ask price, and that across rounds, asking prices never increase, while bids never
decrease. The negotiation is successful when ask and bid prices agree, at which time the QUOTE artifact moves
to the approval pending state, the final price attribute is set, and and no further rounds are conducted.

Service refined negotiation = 〈πrn, ψrn,Srn〉 is described as follows:

• πrn = negotiation
ensures that the service applies only as long as the boolean state flag negotiation is set in the QUOTE
artifact.

• Post-condition ψrn is given as

RQ (o, d, l, a, b, f, app, p, q,m) :=
(∃a′, b′ RQ(o, d, l, a′, b′, ω, app, p, q,m) ∧ a′ 6= b′ ∧ l ≤ a ≤ a′ ∧ b′ ≤ b ∧ f = ω)
∨
(RQ(o, d, l, a, b, ω, app, p, q,m) ∧ a = b = f).

According to the first disjunct, the negotiation is well-formed, i.e. the bid never exceeds the ask price,
and in each round, asking prices a never increase while bids b never decrease. Moreover, as long as ask
and bid price differ, the final price remains undefined (equal to ω). Notice that the values of a and b are
otherwise unconstrained, being simply drawn from the infinite domain. This models their external input
by the manufacturer, respectively customer. The second disjunct states that once ask price a and bid price
b coincide, the final price f is automatically set to the common value.

• Srn contains rules that, upon detecting successful negotiation, switch the QUOTE artifact to stage ap-
proval pending if the customer does not enjoy preferred status with excellent credit. If he does, then the
approval is short-circuited and the QUOTE goes to stage archive. The negotiation is successful when ask
and bid prices agree.

approval pending ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, q,m)

∧ ∃c, n RO(o, c, n, p, q) ∧ ¬CUSTOMER(c, ”preferred”, ”excellent”)

archive ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, q,m)

∧ ∃c, n RO(o, c, n, p, q) ∧ CUSTOMER(c, ”preferred”, ”excellent”)

¬negotiation ← ∃o, d, l, a, f, app, p, q,m RQ(o, d, l, a, a, f, app, p, q,m)

Note that state flag negotiation must be set before the state update rules execute (since pre-condition
πrn is satisfied). If neither of the state rule bodies is satisfied, then according to the possible successor
semantics, the negotiation flag remains set, enabling another negotiation round.

Finally, service quote approval = 〈πqa, ψqa,Sqa〉 models the human supervisor who reviews the quote on
behalf of the manufacturer. The process is a black box, about which is only known that it switches the QUOTE
artifact to archive stage, and it sets the approved attribute to either ”yes” or ”no”.

• πqa
.
= approval pending.

• ψqa is given by

RQ(o, d, l, f, f, f, app, p, q,m) := RQ(o, d, l, f, f, f, ω, p, q,m) ∧ (app = ”yes” ∨ app = ”no”).

24

• Sqa comprises the state rules that switch the artifact to stage archive, and are omitted.

We illustrate desirable properties for Γex, which pertain to its global evolution, as well as to the consistency
of the specification.

One such consistency property requires the state flags in process and done in class ORDER to always be
mutually exclusive:

G(¬(in process ∧ done)).

A more data-centric consistency property requires line item quotes archived in state li quotes of the QUOTE
artifact to pertain only to tentative line items previously input by the customer (into attributes li prod and li qty
of the ORDER artifact), and which underwent successful negotiation and approval. Successful negotiation
occurs when ask, bid and final price coincide and the QUOTE artifact is in state archive:

∀pid, qty, priceG ((∃o, c, n RO(o, c, n, pid, qty) ∧
∃d, l,m RQ(o, d, l, price, price, price, ”yes”, pid, qty,m) ∧ archive)

B

¬li quotes(pid, qty, price)).

Notice the use of the before operator B (requiring its first argument to hold before its second argument fails).
The following property is more semantic in nature, capturing part of the manufacturer’s business model.

It requires that if the customer’s status is not ”preferred” and the credit rating is worse than ”good”, then
before archiving a line item with final negotiated price lower than the manufacturer’s desired price, explicit
approval from a human executive must have been requested. We assume the following ordering on the constants
indicating the credit rating: ”poor” < ”fair” < ”good” < ”excellent”.

ϕ3 : ∀o, c, n, p, q, d, l, f,m, s, r
G ((RO(o, c, n, p, q) ∧ in process ∧RQ(o, d, l, f, f, f, ω, p, q,m) ∧ negotiation ∧ f < d

∧ CUSTOMER(c, s, r) ∧ s 6= ”preferred” ∧ r < ”good”)
→ approval pending B ¬(archive ∧ li quotes(p, q, f))

).

Note that ϕ3 involves both artifacts and the underlying database. If the negotiation process is described by
service refined negotiation, then the property happens to be satisfied: indeed, recall from its state rules that this
service requests approval whenever the customer’s status is not preferred and his credit rating is not excellent. In
particular, this applies to customers whose rating is worse than good, according to the above ordering of credit
ratings.

B Proof of main decidability result

We outline in this section the main steps in the proof of Theorem 3.3.
To begin, we show that it is enough to focus on artifact systems consisting of a single service operating on

a single artifact; we call such systems singleton artifact systems.

Lemma B.1 For each artifact system Γ and LTL-FO sentence ϕ, there exist a singleton artifact system Γs and
LTL-FO sentence ϕs, computable in polynomial time from Γ and ϕ, such that Γ |= ϕ iff Γs |= ϕs. Furthermore,
if Γ and ϕ are guarded, then so are Γs and ϕs.

Proof: We sketch the construction of Γs and ϕs in two stages. First, we show how one can derive from Γ =
〈A,Σ〉 and ϕ ∈ LA an artifact system Γr = 〈Ar,Σr〉 containing only one artifact class C1

r , and an LTL-FO

25

formula ϕr ∈ LAr such that Γ |= ϕ⇔ Γr |= ϕr . Then, we show how Γs and ϕs can be obtained by “merging”
the services of Γr into a single service and modifying the property accordingly.

For the first step, assume that Γ contains artifact classes Ci = 〈Ri, Si〉 (i = 1, . . . , n) and define Cr1 =
〈Rr1, S

r
1〉 as the only artifact class in Γr, with a(Rr1) =

∑n
i=1 a(Ri) and a(Sr1) =

∑n
i=1 a(Si). The idea is to

use Rr1 (respectively Sr1) to store the content of R1, . . . , Rn (S1, . . . , Sn). In particular, the columns of Rr
i (Sri)

are partitioned into n intervals, and the i-th partition is used to store tuples from Rr
i (Sri). Each service of Γ has

a counterpart in Γr that accesses Rr1. Of course, we need to modify the services’ pre/post-conditions and state
rules so that they apply to only one attribute and state relation. This can be achieved by means of a syntactic
transformation ζ that replaces each atom referring to Ri (Si) with an FO formula that “retrieves” Ri (Si) from
Rr1 (Sr1), by projecting out all components irrelevant to Ri (Si requires an encoding using constants to avoid
quantification violating the guarded restriction, but the approach is basically the same). Similar manipulations
are required for state rules.

For the second step, suppose we constructed Γr and ϕr as above, with a single artifact class but multiple
services acting on that class. The main difficulty in constructing Γs (with a single service σs) is to simulate the
nondeterminism on service selection. To this end, we exploit the nondeterminism of postconditions. The idea is
to extend relation Rr1 with an additional attribute, say Service, whose value identifies the next service of Γr to be
simulated by σs. The post-condition of σs allows as the next value of Service any identifier of a service of Γr.
The run of Γs blocks if, at any step, the precondition of the service identified by Service does not hold (but this
does not pose a problem, since blocking runs do not affect LTL properties). The formula ϕr is straightforwardly
modified to ϕs so that Γr |= ϕr iff Γs |= ϕs (the details are omitted). The entire construction preserves the
guarded restriction and is done in polynomial time. �

Let Γ = 〈A,Σ〉 be a singleton artifact system. For notational simplicity, we henceforth specify such a
system as a tuple 〈DB, R, S, π, ψ,S〉 where DB is the database schema of Γ, 〈R,S〉 is the only artifact class,
and π, ψ, and S are the pre-condition, post-condition, and state rules of the service. We represent an instance of
Γ by a tuple 〈DB,R,S〉 where DB is an instance of DB, R is a relation over R containing a single tuple, and S

is a relation over S.
We assume familiarity with model checking of LTL formulas using Büchi automata [33]. We recall that

a Büchi automaton is a non-deterministic finite-state machine accepting infinite words (ω-words) over a finite
alphabet by going infinitely many times through an accepting state. Given a propositional LTL-FO formula ϕ
over a set P of propositions, there is a Büchi automaton Aϕ accepting precisely the ω-words over alphabet 2P

that satisfy ϕ. Moreover, Aϕ has exponentially many states (in |ϕ|). Fortunately Aϕ need not be constructed
explicitly to perform model checking: indeed, there exists a non-deterministic PSPACE algorithm that, given as
input a state of Aϕ and a set in 2P , produces as output a next possible state of Aϕ [30]. We will make use of this
in our algorithm.

Consider a guarded singleton artifact system Γ and a guarded LTL-FO formula ϕ0 = ∀x̄ψ0(x̄) over the
schema of Γ. To check that every run of Γ satisfies ϕ0 we equivalently verify that there is no run of Γ satisfying
¬ϕ0 = ∃x̄¬ψ0(x̄). Let c̄ be a tuple of constants of the same arity as x̄. Verifying that all runs of Γ satisfy ϕ0

is equivalent to checking that no run satisfies ψ(x̄ ← c̄) (the formula obtained by substituting c̄ for x̄ in ψ(x̄))
for any choice of constants c̄. Let us denote ψ(x̄ ← c̄) by ψc̄. Consider now a maximal subformula ξ of ψc̄
that contains no temporal operator, which we call an FO component of ψ c̄. Note that ξ has no free variables
(as variables previously free in ξ have been replaced by the constants in c̄). Thus, ξ can be evaluated to true or
false in every configuration of a run of Γ. This allows treating every such ξ as a proposition. More precisely,
for each FO component ξ of ψc̄, let pξ be a propositional symbol. Let ψc̄aux be the LTL formula obtained by
replacing in ψc̄ every FO component ξ by pξ. For each configuration of Γ, the truth value of pξ is defined as the
truth value of ξ. Clearly, a run of Γ satisfies ψc̄ iff it satisfies ψc̄aux. Specifically, for i ≥ 0, let σ(ρi) be the truth
assignment to the propositions in ψc̄aux such that pξ is true iff ρi |= ξ, and let σ(ρ) = {σ(ρi)}i≥0. Let us denote
by Aψc̄

the Büchi automaton corresponding to the propositional LTL formula ψ c̄aux. A run of Aψc̄
on σ(ρ)

26

is an infinite sequence of states q0, s0, s1, . . . , si, . . . such that q0 is the start state of Aψc̄
, and 〈q0, σ(ρ0), s0〉,

〈si, σ(ρi+1), si+1〉 are transitions in Aψc̄
for each i ≥ 0. Clearly, ρ |= ψc̄ iff there exists a run of Aψc̄

on input
σ(ρ) that goes through some accepting state, say f , infinitely often.

The core difficulty of verifying the above is that Γ is an infinite-state system (as it has infinitely many
configurations), rather than a finite-state system as in classical model checking. Thus, exhaustive exploration
of all possible runs of Γ is impossible. The solution lies in avoiding explicit exploration of the state space.
Instead of materializing a full initial database and exploring the possible runs on it, we generate symbolic
representations of equivalence classes of actual runs, called pseudoruns, in which every configuration retains just
the information needed to check satisfaction of ψc̄. Moreover, this information is sufficient to obtain the same
information about the next configuration (so it is a “closed” representation system with respect to transitions
of Γ). This makes crucial use of the guarded restriction. Furthermore, it can be shown that each pseudorun
satisfying ψc̄ corresponds to an actual run that also satisfies ψc̄, on some possibly very large database, which is
however never explicitly constructed. Thus, it is enough to limit ourselves to exploration of pseudoruns. Since
pseudorun configurations turn out to be of polynomial size, this yields a PSPACE verification algorithm. We next
outline the technical development in more detail.

Let Γ = 〈DB, R, S, π, ψ,S〉 be a guarded singleton artifact system, and ϕ a guarded LTL-FO formula. Let
ψc̄ be obtained from ϕ as described above, for some sequence c̄ of constants. Let C be the set of all constants
used in the specification of Γ and in ψc̄ (this includes c̄). For the purpose of this proof, we define the active
domain of every database instance to consist of C together with the elements occurring in the instance.

For technical reasons, we will use a slightly different notion of run of Γ than in Section 2, called C-run, that
depends on C and includes some additional information.

Specifically, a C-run of Γ on database DB is a sequence ρ = {〈DB, Ii,Oi,Si〉}i≥0 where

• {〈DB, Ii,Si〉}i≥0 is a run of Γ, and

• Oi = Ii+1 for i ≥ 0.

For a run ρ, we denote its i-th configuration 〈DB, Ii,Oi,Si〉 by ρi.
Intuitively, each configuration in a C-run includes both the input artifact consumed and the output artifact

produced at each step. Of course, the output artifact at step i coincides with the input artifact at step i + 1.
Recall that both the pre-condition for Ii and the post-condition for Oi are evaluated in state Si, which makes it
convenient to represent both as part of the same instance.

We say that two instances H and H ′ over the same database schema are C-isomorphic iff there exists an
isomorphism from H to H ′ that is the identity on C and preserves ≤. The C-isomorphism type of H consists of
all instances H ′ that are C-isomorphic to H . The restriction of an instance H to a set M of domain elements,
denoted K|M , is the instance consisting of the tuples in K using only elements in M .

Let DBi = DB|adom(Ii∪Oi)
and ≤i=≤ |adom(Ii∪Oi). A key observation towards building pseudoruns is that,

due to the guarded restriction, the truth value of each FO component of ψ c̄ in a configuration 〈DB, Ii,Oi,Si〉 is
completely determined by the isomorphism type of 〈DBi, Ii,Oi,Si|C,≤i〉. Since Ii and Oi contain only one tuple
each, the number of such C-isomorphism types is finite. Moreover, due to the guarded restriction on the state
rules, the same information about the possible 〈DBi+1, Ii+1,Oi+1,Si+1〉 is determined by the corresponding
information about 〈DBi, Ii,Oi,Si〉. With some care, similar observations extend to satisfaction of π and ψ.
Indeed, let ζ = π ∧ ψ. Recall that ζ is existentially quantified. By a simple syntactic manipulation, we can
additionally enforce that all existential quantifications in ζ are guarded. This is done by first extending R in order
to include columns for all bound variables of ζ , then projecting out these columns by a guarded quantification
whenever R is used in any formula. Consequently, we can assume that Ii and Oi include all witnesses needed to
satisfy ζ on 〈DB, Ii,Si〉. Thus, it is enough to consider C-isomorphism types as above. Our pseudoruns, defined
shortly, will essentially represent such C-isomorphism types.

27

For each ρi = 〈DB, Ii,Oi,Si〉, let ρ↓i = 〈DBi, Ii,Oi,Si|C,≤i〉. We refer to the sequence {ρ↓i }i≥0 as the local
C-run4 of ρ. We say that a sequence {ρ′i}i≥0 is a local C-run of Γ on DB if it is the local C-run of some C-run
of Γ on DB. We will use the following.

Lemma B.2 Let Γ be a guarded singleton artifact system, ϕ a guarded LTL-FO formula, and c̄, ψ c̄, C , and ρ
be as above. Let ξ be an FO component of ψc̄. Then for each configuration ρi in the C-run ρ, ρi |= ξ iff ρ↓i |= ξ.

Proof: Let ρi = 〈DB, Ii,Oi,Si〉. We show by induction the following:

(†) for every subformula ξ ′(x̄) of ξ with free variables x̄, and sequence ē of elements in C i of the same arity
as x̄, ρi |= ξ′(x̄← ē) iff ρ↓i |= ξ′(x̄← ē).

As a consequence of (†), ρi |= ξ iff ρ↓i |= ξ, since ξ has no free variables.
Consider (†). We can assume wlog that ξ uses only ∧,¬ and ∃. For the basis, suppose ξ ′(x̄) is an atom

Q(t1, . . . , tm) where each ti is an element in C or a variable in x̄. IfQ is the state relation S, all ti’s are elements
in C by the guarded restriction, so (†) holds because ρ↓i retains Si|C . If Q is R or a database relation, then again
(†) holds because ρ↓i retains Ii and DBi. The case when ξ′(x̄) is an atom of the form ti = tj or ti ≤ tj is obvious.
Consider the induction step. If ξ ′ = ξ1 ∧ ξ2 or ξ′ = ¬ξ1 and ξ1, ξ2 satisfy (†), it immediately follows that ξ ′

satisfies (†). Now suppose ξ ′(x̄) = ∃y(R(t1, . . . , tk) ∧ ϕ(x̄, y)) where each variable among the ti’s is either y
or in x̄ (at least one ti is y by the guarded restriction), and (†) holds for ϕ(x̄, y). Then ρi |= ξ′(x̄← ē) iff there
exists c occurring in R such that ρi |= R(t1, . . . , tk)[x̄← ē, y ← c] ∧ ϕ(x̄, y)[x̄← ē, y ← c]. By the induction
hypothesis, this happens iff ρ↓i |= R(t1, . . . , tk)[x̄ ← ē, y ← c] ∧ ϕ(x̄, y)[x̄ ← ē, y ← c], so ρ↓i |= ξ′(x̄ ← ē),
which shows (†). �

Lemma B.2 shows that, as desired, in a configuration ρi, the information relevant to satisfaction of ψc̄ is
captured by ρ↓i . Consequently, a C-run satisfies ψc̄ iff its local C-run satisfies ψc̄. We next show that one can
further focus on special kinds of local C-runs, that we call db-periodic. The key intuition behind db-periodicity
is that in every infinite run on a finite database, the portions of local configurations that use only elements from
the database must repeat at some point. However, the run may generally also involve infinitely many domain
elements not occurring in the database, so proper periodicity may not be achievable. This leads to the following.

Definition B.3 Let Γ be a guarded singleton artifact system, ϕ a guarded LTL-FO formula, and C be as above.
A local C-run ρ↓ = {ρ↓i }i≥0 of Γ on database DB is db-periodic if there exist n, p > 0 such that for every
h ≥ n, adom(ρ↓h) ∩ adom(DB) = adom(ρ↓h+p) ∩ adom(DB) and there exists a C-isomorphism from ρ↓h to

ρ↓h+p that is the identity on adom(ρ↓h) ∩ adom(ρ↓h+p).

We can show the following.

Lemma B.4 Let Γ be a guarded singleton artifact system, ϕ a guarded LTL-FO formula, and c̄, ψ c̄, and C be
as above. There exists a C-run of Γ satisfying ψc̄ iff there exists a db-periodic local C-run of Γ satisfying ψc̄.

Proof: By Lemma B.2, there exists aC-run of Γ satisfying ψc̄ iff there exists a local C-run of Γ satisfying ψc̄. It
remains to show that if there exists a local C-run of Γ satisfying ψ c̄ then there exists a db-periodic local C-run of
Γ satisfying ψc̄. Consider a C-run ρ = {ρi}i≥0 of Γ on database DB, satisfying ψc̄, and the corresponding local
C-run ρ↓ = {ρ↓i }i≥0. Let Aψc̄

be the Büchi automaton corresponding to the propositional LTL formula ψ c̄aux.
Recall that for i ≥ 0, σ(ρ↓i) denotes the truth assignment to the propositions in ψc̄aux such that pξ is true iff ρ↓i |=

4Our local run is an extension of the notion of local run introduced in [31, 32] for ASM transducers.

28

ξ, and σ(ρ↓) = {σ(ρ↓i)}i≥0. Since ρ↓ |= ψc̄, there exists a C-run q0, s0, s1, . . . , si, . . . of Aψc̄
on input σ(ρ↓)

that goes through some accepting state, say f , infinitely often. We define the following equivalence relation on
D: a ≡ b iff for every e ∈ adom(DB), a ≤ e iff b ≤ e. Clearly, ≡ has finitely many equivalence classes for
given C and DB. Using this, and the fact that adom(DB) is finite, it is easily seen by a pigeon-hole argument
that there must exist n < m, such that sn = sm = f , adom(ρ↓n) ∩ adom(DB) = adom(ρ↓m) ∩ adom(DB),
and ρ↓n and ρ↓m are isomorphic by an isomorphism α that is the identity on adom(ρ↓n) ∩ adom(ρ↓m) and for
which a ≡ α(a) for every a. Since ≤ is a dense, countable order with no endpoints, it is easily seen by a simple
back-and-forth construction that there exists a bijection ᾱ on D extending α and preserving ≤. Let p = m− n
and consider the sequence ρ′ of local configurations defined inductively as follows: ρ′j = ρ↓j for 0 ≤ j ≤ n+ p,
and ρ′j = ᾱ(ρ′j−p) for j > n+ p. It is easily seen that ρ′ is a db-periodic local C-run of Γ satisfying ψc̄. �

We next develop a symbolic representation for local C-runs, leading to our notion of pseudorun. The idea
is to represent local configurations using a fixed, finite set of symbols. Intuitively, symbols must be “reused”
in such a representation, so the same symbol occurring in different symbolic configurations may correspond to
different domain elements in a real local C-run.

Let k = 2 · arity(R). Let Vk = C ∪ {v1, . . . , vk}, where v1, . . . , vk are distinct new symbols. We can
clearly represent the C-isomorphism type of ρ↓i by an instance whose domain is Vk. To do so, it is enough to
fix some injective mapping fi from adom(ρ↓i) to Vk that fixes C , and consider the instance τi = fi(ρ

↓
i) over

Vk. By definition, τi is C-isomorphic to ρ↓i . We wish to extend this to a representation of entire local C-runs by
sequences of instances with domain Vk. To do so, we proceed as follows. Let {ρ↓i }i≥0, be a local C-run, where
ρ↓i = 〈DB

ρ
i , I

ρ
i ,O

ρ
i ,S

ρ
i ,≤i〉. We define by induction a sequence of one-to-one mappings {fi}i≥0, where fi maps

adom(ρ↓i) to Vk and is the identity on C:

• f0 is an arbitrary one-to-one mapping from adom(ρ↓0) to Vk that fixes C .

• for i ≥ 0, fi+1 is an arbitrary extension of fi|adom(Oi) to a one-to-one mapping from adom(ρ↓i+1) to Vk
that is the identity on C .

Now let τi = fi(ρ
↓
i) for each i ≥ 0. By definition, τi and ρ↓i are C-isomorphic, and the sequence τ = {τi}i≥0

uses only elements in Vk. Also note that, since τi and ρ↓i are C-isomorphic, τ satisfies ψc̄ iff ρ↓ satisfies ψc̄.
We would like to be able to generate sequences {τi}i≥0 of instances using elements in Vk independently

of any particular local C-run. To this end, we need to understand which sequences of symbolic configurations
correspond to local C-runs. As a first step, we introduce the notion of C-pseudorun.

Definition B.5 Let Γ = 〈DB, R, S, π, ψ,S〉 be a guarded singleton artifact system, and let ψ c̄, C , and Vk be
defined as above. A C-pseudorun of Γ is a sequence of instances

{〈DBi, Ii,Oi,Si,�i〉}i≥0

with elements in Vk such that for each i ≥ 0:

1. DBi, Ii,Oi,Si are database, input, output, and state instances;

2. adom(Si) ⊆ C;

3. Ii and Oi contain one tuple each, and adom(DBi) ⊆ adom(Ii ∪Oi);

4. �i is an extension of ≤ |C to adom(Ii ∪Oi);

5. DBi|adom(Oi) = DBi+1|adom(Oi), and �i |adom(Oi) =�i+1 |adom(Oi);

29

6. 〈DBi, Ii,Si,�i〉 |= π (with ≤ interpreted as �i);

7. if Oi = {〈ā〉}, then 〈DBi, Ii,Si,�i〉 |= ψ(x̄← ā) (with ≤ interpreted as �i);

8. S0 = ∅;

9. Si+1 = S′
i+1|C , where S′

i+1 is the state relation defined from the instance 〈DBi, Ii,Si,�i〉, according to the
state rules of Γ (with active domain semantics and ≤ interpreted as �i).

Consider a local C-run ρ↓ = {ρ↓i }i≥0 of Γ and the corresponding sequence {fi(ρ
↓
i)}i≥0 of configurations

over Vk defined above. We next show that, as desired, this is a C-pseudorun of Γ.

Lemma B.6 Let ρ↓ = {ρ↓i }i≥0 be a local C-run of Γ. The sequence {fi(ρ
↓
i)}i≥0 defined above is a C-

pseudorun of Γ.

Proof: Let τi = fi(ρ
↓
i), i ≥ 0. Parts (1-8) of Definition B.5 are obviously satisfied. Consider (9). Consider

τi and τi+1 for i ≥ 0. Suppose φ+(x̄) and φ−(x̄) are the guarded formulas of Γ defining the tuples to be
inserted, respectively deleted from S. Let ē be a sequence of elements in C of the same arity as x̄. Since ρ↓i
is C-isomorphic to τi and φ+, φ− are input bounded, one can show similarly to (†) in the proof of Lemma B.2
that τi |= φ+(ē) iff ρ↓i |= φ+(ē), and also τi |= φ−(ē) iff ρ↓i |= φ−(ē). Also by (†), ρ↓i |= φ+(ē) iff ρi |= φ+(ē)

and ρ↓i |= φ−(ē) iff ρi |= φ−(ē). It follows that ē is inserted/deleted from S in the transition from ρi to ρi+1

iff it is inserted/deleted in the transition from ρ↓i to ρ↓i+1 iff it is inserted/deleted in the transition from τi to
τi+1 according to the state rule. Since by definition S is the same in ρi, ρ

↓
i , and τi, and S is also the same in

ρi+1, ρ
↓
i+1, and τi+1, (9) holds. �

Consider a C-pseudorun τ and the elements in Vk. Some of the elements occurring in different configura-
tions of τ represent the same value in every local C-run corresponding to it, while others are independent of
each other. We denote by 〈i, a〉 the occurrence of a in τi, where i ≥ 0 and a ∈ Vk. Let V i

k = {〈i, a〉 | a ∈ Vk},
and V∞

k = ∪i≥0V
i
k . To capture the required equalities among elements in different configurations, we define

the following equivalence relation ≈ on V ∞
k . First, for a ∈ Vk − C , let 〈i, a〉 ∼ 〈i + 1, a〉 if a occurs in Oi.

For a ∈ C , let 〈i, a〉 ∼ 〈j, a〉 for all i, j. Next, let ≈ be the symmetric, reflexive, transitive closure of ∼. The
span of 〈i, a〉 is the set span(〈i, a〉) = {j | 〈i, a〉 ≈ 〈j, a〉}. Note that for each a ∈ adom(τi), span(〈i, a〉) is
an interval containing i, possibly infinite to the right. We denote the equivalence class of 〈i, a〉 with respect to
≈ by 〈i, a〉≈.

Let τ = {τi}i≥0 be a C-pseudorun. For each i ≥ 0, we denote by τi,≈ the result of replacing each a in τi by
〈i, a〉≈, and by τ≈ the sequence {τi,≈}i≥0.

Let �∞
i be the total order relation on V i

k/ ≈ defined by 〈i, a〉≈ �∞
i 〈i, b〉≈ iff a �i b. Let �∞ be the

transitive closure of ∪i≥0 �
∞
i .

We note the following.

Lemma B.7 Let τ be a C-pseudorun. Then �∞ is a partial order on V ∞
k / ≈.

Proof: To show that �∞ is a partial order, it is enough to show that ∪i≥0 ≺
∞
i is acyclic. Suppose, to the

contrary, that there exist aij ∈ adom(τij), 1 ≤ j ≤ n, such that

〈i1, ai1〉≈ ≺
∞
i1
〈i2, ai2〉≈ ≺

∞
i2
〈i3, ai3〉≈ . . . ≺

∞
in−1
〈in, ain〉≈ ≺

∞
in
〈i1, ai1〉≈

and n is minimum with this property. We can assume, wlog, that min(span(〈i1, ai1〉)) ≤ min(span(〈ij , aij 〉))
for all j, 1 ≤ j ≤ n. We further show that

30

(†) min(span(〈ij , aij 〉)) ≤ min(span(〈ij+1, aij+1
〉)) for all 1 ≤ j < n.

We use the minimality of n. Indeed, suppose (†) does not hold, and let j be minimum such that

min(span(〈ij , aij 〉)) > min(span(〈ij+1, aij+1
〉)).

By assumption, j > 1 and by minimality of j, min(span(〈ij−1, aij−1
〉)) ≤ min(span(〈ij, aij 〉)). Since

span(〈ij , aij 〉) ∩ span(〈ij−1, aij−1
〉) 6= ∅ and span(〈ij, aij 〉) ∩ span(〈ij+1, aij+1

〉) 6= ∅ it follows that

m = min(span(〈ij, aij 〉)) ∈ span(〈ij−1, aij−1
〉) ∩ span(〈ij+1, aij+1

〉).

Thus, 〈ij−1, aij−1
〉≈ ≺

∞
m 〈ij+1, aij+1

〉≈. This yields a shorter cycle and contradicts the minimality of n.
Thus, we have shown (†). From (†) and the fact that min(span(〈in, ain〉) ∈ span(〈i1, a1〉) it follows that
span(〈i1, a1〉) ∩ span(〈ij , aj〉) 6= ∅ for every j, 1 < j ≤ n. It then follows by an easy induction that
〈i1, a1〉≈ ≺

∞
j 〈ij , aj〉≈ for all such j. In particular, 〈i1, a1〉≈ ≺

∞
n 〈in, an〉≈, which contradicts the assumption

that 〈in, an〉≈ ≺∞
n 〈i1, a1〉≈. This completes the proof. �

We next define the analog of db-periodicity for C-pseudoruns. The intention is to characterize the C-
pseudoruns that correspond to db-periodic local C-runs of Γ. To ensure the correspondence, we must require
some properties that are subtle consequences of the combination of infinite, ordered domain and finite database.
For example, a C-pseudorun may generally create an infinite increasing chain (wrt �∞) of elements of V ∞

k / ≈
that occur in the database (called db-bound below). Clearly, such C-pseudoruns cannot correspond to any local
C-run on a finite database, and they are ruled out by requirement (iii) below. Note however that infinite chains
not involving db-bound elements must be allowed, since these may occur in local C-runs involving infinitely
many domain values.

Definition B.8 Let Γ be a singleton artifact system and τ = {τi}i≥0 = {〈DBi, Ii,Oi,Si,�i〉}i≥0 a C-pseudorun
of Γ. Consider τ≈. An equivalence class e of ≈ is called db-bound iff there exists j such that 〈j, a〉 ∈ e for
some a occurring in DBj. The C-pseudorun τ is db-periodic if there exist n, p > 0 such that, for every h ≥ n,
there exists an isomorphism µh from τh,≈ to τh+p,≈ such that:

(i) µh is the identity on adom(τh,≈) ∩ adom(τh+p,≈),

(ii) 〈h, a〉≈ is db-bound iff µh(〈h, a〉≈) is db-bound,

(iii) if 〈h, a〉≈ is db-bound then 〈h, a〉≈ and µh(〈h, a〉≈) are incomparable wrt ≺∞.

It will be useful to note the following.

Lemma B.9 Let τ = {τi}i≥0 = {〈DBi, Ii,Oi,Si,�i〉}i≥0 be a db-periodic C-pseudorun of Γ. Let n, p and µh
be as above. Then the following hold:

(i) for each a ∈ V ∞
k / ≈ and i, j ∈ span(a) such that i, j ≥ n, µi(a) = µj(a); and,

(ii) for every h ≥ n, adom(τh,≈) ∩ adom(τh+p,≈) =
⋂

i≥n adom(τi,≈).

Proof: Both (i) and (ii) are straightforward consequences of the fact that Oi = Ii+1 for every i ≥ 0, and
µi(Oi) = Oi+p = Ii+p+1 = µi+1(Ii+1) for every i ≥ n. Thus, µi and µi+1 agree on Oi = Ii+1. �

We next show the following key result, establishing the desired connection between pseudoruns and actual
runs.

31

Lemma B.10 Let Γ be a guarded singleton artifact system and ϕ a guarded LTL-FO formula. Let C , c̄, and ψ c̄
be as above. The following are equivalent:

(a) there exists some db-periodic local C-run ρ↓ of Γ such that ρ↓ |= ψc̄, and

(b) there exists some db-periodic C-pseudorun τ of Γ such that τ |= ψ c̄.

Proof: Consider (a) → (b). Let ρ↓ = {ρ↓i }i≥0 be a db-periodic local C-run of Γ, that satisfies ψc̄. Consider
the C-pseudorun τ = {τi}i≥0 = {fi(ρ

↓
i)}i≥0 of Γ constructed prior to Lemma B.6. Since ρ↓i and τi are

C-isomorphic for each i ≥ 0, τ |= ψc̄. We show that τ is db-periodic. Since ρ↓ is db-periodic, there exist
n, p > 0 such that for every h ≥ n, adom(ρ↓h) ∩ adom(DB) = adom(ρ↓h+p) ∩ adom(DB) and there exists a

C-isomorphism α from ρ↓h to ρ↓h+p that is the identity on adom(ρ↓h) ∩ adom(ρ↓h+p). Consider the mapping g
from V∞

k / ≈ to the domain of ρ↓ defined by inverting the mappings fi, i ≥ 0. More precisely, for each i ≥ 0
and a ∈ Vk, let g(〈i, a〉≈) = f−1

i (a). The following are immediate from the definition, for each i, j ≥ 0:

1. g is well defined,

2. if 〈i, a〉≈ is db-bound then g(〈i, a〉≈) ∈ adom(DB),

3. if 〈i, a〉≈ ≺∞ 〈j, a〉≈ then g(〈i, a〉≈) < g(〈j, a〉≈).

Now consider the mapping µ which is the restriction of g ◦α◦g−1 to adom(τh,≈). Clearly, µ is an isomorphism
from τh,≈ to τh+p,≈. We show that µ satisfies the properties (i)-(iii) required by the definition of db-periodicity.
Consider (i). If 〈h, a〉≈ ∈ adom(τh,≈)∩adom(τh+p,≈), then 〈h, a〉 ≈ 〈h+p, a〉 and by (1) above, g(〈h, a〉≈) =

g(〈h + p, a〉≈) so g(〈h, a〉≈) ∈ adom(ρ↓h) ∩ adom(ρ↓h+p) so α(g(〈h, a〉≈)) = g(〈h, a〉≈) = g(〈h + p, a〉≈)
and µ(〈h, a〉≈) = 〈h + p, a〉≈ = 〈h, a〉≈. Now consider (ii). Suppose 〈h, a〉≈ is db-bound. Then by (2),
g(〈h, a〉≈) ∈ adom(DB) so α(g(〈h, a〉≈)) = g(〈h, a〉≈) and µ(〈h, a〉≈) is also db-bound. The converse is
similar. Finally, consider (iii). Suppose 〈h, a〉≈ is db-bound and 〈h, a〉≈ ≺∞ µ(〈h, a〉≈). By (3), g(〈h, a〉≈) <
g(µ(〈h, a〉≈). However, by definition g(µ(〈h, a〉≈) = α(g(〈h, a〉≈)) and by (2), g(〈h, a〉≈) ∈ adom(DB).
Since α is the identity on adom(DB), α(g(〈h, a〉≈)) = g(〈h, a〉≈). Thus, g(〈h, a〉≈) < g(〈h, a〉≈), which is a
contradiction. The case when µ(〈h, a〉≈) ≺∞ 〈h, a〉≈ is similar. Thus, (iii) holds, and τ is db-periodic.

Now consider the harder (b)→ (a). Let τ = {τi}i≥0 be a db-periodic C-pseudorun satisfying ψc̄. We define
a finite database DB and a db-periodic local C-run ρ↓ = {ρ↓i }i≥0 of Γ on DB such that for each i ≥ 0, ρ↓i is
C-isomorphic to τi. In particular, ρ↓ |= ψc̄.

In order to obtain a local C-run from τ , we will assign values from D to elements in V ∞
k / ≈. This yields

a sequence of instances that obeys the definition of local C-run, except that it uses a database with an infinite
domain. We will then perform some “surgery” on this sequence in order to obtain a proper local C-run over a
finite database. The resulting local C-run may still use infinitely many domain values, but only finitely many of
them occur in the database.

Let �∞
? be a linear extension of the partial order �∞ with the following property: for all pairs a, b of db-

bound elements in V ∞
k / ≈ that are incomparable with respect to �∞, and every c 6= a, b in V ∞

k / ≈, c �∞
? a

iff c �∞
? b and a �∞

? c iff b �∞
? c. It is easy to see that such �∞

? exists.
Next, let g be a bijection from V ∞

k / ≈ to (D,≤) that is the identity on C and preserves �∞
? . Such a

bijection exists because �∞
? is an order on a countable set and ≤ is dense without endpoints. Now consider the

sequence τ g = {g(τi,≈)}i≥0. We denote for conciseness g(τi,≈) by τ gi , and let τ gi = 〈DBi, Ii,Oi,Si,≤i〉, i ≥ 0.
Let DB

g = ∪i≥0DBi. It is easily seen, using the consistency requirement (5) in the definition of pseudorun,
that DB

g|adom(DBi) = DBi for all i ≥ 0. It follows that τ g satisfies the definition of a local C-run of Γ on
database DB

g, except for the requirement that DB
g be finite.

32

For given τ g, it will be convenient to extend the notion of span to elements in adom(τ g), which is done as
for pseudoruns. In particular, span(g(a)) = span(a). We call an element in τ g db-bound iff it is the image
under g of a db-bound element in adom(τ≈). Equivalently, a is db-bound iff a ∈ adom(DBi) for some i ≥ 0.
Also note that, since τ g is isomorphic to τ≈, the analog of Lemma B.9 also holds for τ g.

Since τ is db-periodic, there exist n, p′ > 0 satisfying the requirements of db-periodicity of a pseudorun.
Let p = 3p′. It is easily seen, using part (ii) of Lemma B.9, that τ gn and τ gn+p have the following property:

(†) there are no a, b, c ∈ adom(τ g) such that a ∈ adom(τ gn) − adom(τ gn+p), b ∈ adom(τ gn+p)−adom(τ gn),
c 6∈ adom(τ gn) ∩ adom(τ gn+p), such that span(a) ∩ span(c) 6= ∅ and span(b) ∩ span(c) 6= ∅.

Intuitively, (†) states that τ gn and τ gn+p are sufficiently far apart that there is no interference between them
(except through their common elements). We next use this to perform some “surgery” on τ g in order to obtain
a local C-run that uses only finitely many db-bound elements. This will allow us to replace the infinite DB

g by
a finite database.

Let µn be the isomorphism from τn,≈ to τn+p,≈ whose existence is guaranteed by the db-periodicity of τ .
Let µgn be the C-isomorphism from τ gn to τ gn+p induced by µn via g. Let µdb be the restriction of µgn to the
db-bound elements in adom(τ gn), extended to the identity everywhere else. In particular, note that µgn is the
identity on adom(τ gn) ∩ adom(τ gn+p). Consider the subsequence τ̄ = µdb(τ

g
n), . . . , µdb(τ

g
n+p−1). We show that

(‡) µdb(τ
g
i) and τ gi are C-isomorphic by µdb, n ≤ i < n+ p.

It is obvious that µdb is the identity on C , since C ⊆ adom(τ gn) ∩ adom(τ gn+p). To establish (‡), it is enough
to show that µdb is injective and preserves <. For injectivity, suppose µdb(a) = µdb(b) and a 6= b for a, b ∈
adom(τ gi). Clearly, this can only happen if a ∈ adom(τ gn) and b 6∈ adom(τ gn) (or conversely, which is similar).
But then µdb(b) = b, and so µdb(a) = b and b ∈ adom(τ gn+p). However, this contradicts (†). Hence, µdb
is injective. To see that µdb preserves <, suppose a, b ∈ adom(τ gi) and a < b. If a, b are db-bound and
a, b ∈ adom(τ gn) then µdb(a) = µgn(a) and µdb(b) = µgn(b) and µgn(a) < µgn(b) since µgn is an isomorphism.
Similarly, if a, b are not db-bound or a, b 6∈ adom(τ gn) then µdb(a) = a and µdb(b) = b, so µdb(a) < µdb(b).
Suppose a is db-bound and belongs to adom(τ gn), and b is not db-bound or b 6∈ adom(τ gn) (the other case is
symmetric). Then µdb(b) = b. Let µgi be the isomorphism from τ gi to τ gi+p induced by µi. Since n, i ∈ span(a),
µdb(a) = µgn(a) = µgi (a) by (i) of Lemma B.9. Since a is db-bound, g−1(a) and µi(g−1(a)) are db-bound and
incomparable with respect to ≺∞. Since a < b, g−1(a) ≺∞

? g−1(b), and from the definition of ≺∞
? it follows

that µi(g−1(a)) ≺∞
? g−1(b). Since g preserves ≺∞

? , µgi (a) < b. Thus, µdb(a) < µdb(b). This proves (‡).
Note that µdb(τ

g
n) and τ gn+p have identical restrictions to their db-bound elements (so in particular, their

database and state relations are the same). We next construct a db-periodic local C-run using finitely many
db-bound elements as follows. Essentially, this is done by repeating forever the sub-sequence

τ̄ = µdb(τ
g
n), . . . , µdb(τ

g
n+p−1)

following τ g0 , . . . , τ
g
n+p−1, except that elements that are not db-bound remain unchanged. More precisely, we

define a local C-run ρ↓ = {ρ↓i }i≥0 as follows. First, ρ↓i = τ gi for 0 ≤ i < n+ p− 1. Next, consider i such that
n+ qp ≤ i < n+ (q + 1)p for q ≥ 1. From the db-periodicity of τ and the fact that µdb is a C-isomorphism, it
follows that τ gi and µdb(τ

g
n+(i−qp)) are C-isomorphic by an isomorphism that is the identity on the intersection

of their domains. Let ν be the restriction of this isomorphism to the db-bound elements of τ gi , extended with the
identity on the elements that are not db-bound. Let ρ↓i = ν(τ gi). Thus, the db-bounded portion of τ gi is replaced
with the db-bounded portion of µdb(τ

g
n+(i−qp)) while the elements that are not db-bound remain unchanged.

Similarly to (‡), it can be shown that ν remains a C-isomorphism. Thus, ρ↓i is C-isomorphic to τ gi and to τi for
all i ≥ 0.

Let ρ↓i = 〈DB′
i, I

′
i,O

′
i,S

′
i,≤

′
i〉, i ≥ 0, and let DB

′ = ∪i≥0DB
′
i. Clearly, DB

′ is finite. We will show that ρ↓ is
a db-periodic local C-run of Γ. We claim that

33

(*) DB
′|adom(ρ↓i) = DB

′
i for each i ≥ 0.

This follows straightforwardly from (†) and the easily shown fact that ρ↓ satisfies the consistency criterion
DB

′
i|adom(ρ↓i)∩adom(ρ↓i+1

)
= DB

′
i+1|adom(ρ↓i)∩adom(ρ↓i+1

)
for every i ≥ 0.

Let ρ = {〈DB′, I′i,O
′
i,S

′′
i 〉}i≥0 be obtained from ρ↓ by computing for each i ≥ 0, S ′′

i+1 from 〈DB′, I′i,O
′
i,S

′′
i 〉,

using the state rules of Γ. From (∗), the definition of pseudorun, and the construction of ρ↓, it is clear that ρ is
a run of Γ on database DB

′, and ρ↓ is the local C-run of ρ. Also, ρ↓ is db-periodic by construction. Since ρ↓i is
C-isomorphic to τi for every i ≥ 0, and τ |= ψc̄, it follows that ρ↓ |= ψc̄. This completes the proof. �

Lemma B.10 says that in order to determine whether some C-run of Γ satisfies ψ c̄, it is enough to focus on
db-periodic C-pseudoruns of Γ. However, such pseudoruns are still infinite. Fortunately, as shown next, the db-
periodicity guarantees the existence of certain prefixes providing finite representations for such C-pseudoruns.
Thus, it is sufficient to search for such finite prefixes.

Lemma B.11 Let Γ, C , and ψc̄ be as above. Let Aψc̄
be the Büchi automaton corresponding to ψc̄aux. There

exists a db-periodic C-pseudorun of Γ satisfying ψc̄ iff there exist n, p > 0 and a finite prefix τ = {τi}0≤i≤n+p

of a C-pseudorun of Γ such that:

1. some run of Aψc̄
on {σ(τi)}0≤i≤n+p reaches an accepting state f at σ(τn) and σ(τn+p),

2. there exists an isomorphism µ from τn,≈ to τn+p,≈ satisfying conditions (i) − (iii) in the definition of
db-periodic C-pseudorun and additionally µ(〈n, a〉≈) = 〈n+ p, a〉≈ for every a ∈ Vk, and

3. there is no a ∈ Vk and db-bound e ∈ ∪n≤i≤n+pV
i
k/ ≈ such that

〈n, a〉≈ ≺τ e ≺τ 〈n+ p, a〉≈ or 〈n+ p, a〉≈ ≺τ e ≺τ 〈n, a〉≈

where �τ is the partial order on ∪0≤i≤n+pV
i
k/ ≈ induced by ∪0≤i≤n+p �

∞
i .

Proof: The only if part follows from a simple pigeon-hole argument on a db-periodic C-pseudorun satisfying
ψc̄. Part (3) follows from condition (iii) in the definition of db-periodic C-pseudorun. Consider the if part.
Suppose we have a finite C-pseudorun prefix {τi}0≤i≤n+p satisfying (1)-(3). Note that by (2), τn = τn+p.
We can obtain an infinite db-periodic C-pseudorun satisfying ψ c̄ by concatenating infinitely many times the
subsequence τn+1 . . . τn+p following τn. Satisfaction by the resulting C-pseudorun of (iii) in the definition of
db-periodic C-pseudorun follows from the fact that {τi}0≤i≤n+p satisfies (3). �

We are now ready to describe a non-deterministic PSPACE verification algorithm for guarded singleton arti-
fact systems and guarded LTL-FO properties. The input to the algorithm is a guarded singleton artifact system
Γ and a guarded LTL-FO formula ϕ. Let ∃x̄ψ(x̄) be the negation of ϕ and let c̄ be a non-deterministically
chosen sequence of possibly repeating constants, one for each variable in x̄. Let C consist of c̄ together with
all constants used in the specification of Γ or in ϕ. Let ψc̄ = ψ[x̄ ← c̄] and let ψc̄aux be the propositional
LTL formula obtained by replacing each FO component ξ of ψc̄ by a propositional symbol pξ. Let Aψc̄

be the
Büchi automaton corresponding to ψc̄aux. Let k = 2 · arity(R) and Vk = C ∪ {v1, . . . , vk}, where the vi’s
are distinct new constants. We will use a non-deterministic PSPACE algorithm to guess a finite C-pseudorun
prefix as in Lemma B.11. This will be done by non-deterministically generating consecutive configurations in
the pseudorun while running Aψc̄

on the generated configurations. In order to check that properties (2) and (3)
are satisfied, we will need to incrementally maintain some additional information. Specifically, let π be a finite
sequence π1 . . . πm of consecutive pseudoconfigurations. Similarly to Lemma B.11, let �π be the partial order
on ∪1≤i≤mV

i
k/ ≈ induced by ∪1≤i≤m �

∞
i . We define four partial mappings from the elements of π1 to those

of πm:

34

• minπ is the mapping from Vk to Vk such thatminπ(a) = b iff 〈m, b〉≈ is the minimum element in V m
k / ≈

for which 〈1, a〉≈ �π 〈m, b〉≈

• mindbπ is the mapping from Vk to Vk such that minπ(a) = b iff 〈m, b〉≈ is the minimum element in
V m
k / ≈ for which exists a db-bound e ∈ ∪1≤i≤mV

i
k/ ≈ such that 〈1, a〉≈ ≺π e ≺π 〈m, b〉≈

• maxπ is the mapping from Vk to Vk such that maxπ(a) = b iff 〈m, b〉≈ is the maximum element in
V m
k / ≈ for which 〈m, b〉≈ �π 〈1, a〉≈

• maxdbπ is the mapping from Vk to Vk such that maxπ(a) = b iff 〈m, b〉≈ is the maximum element in
V m
k / ≈ for which there exists a db-bound e ∈ ∪1≤i≤mV

i
k/ ≈ such that 〈m, b〉≈ ≺π e ≺π 〈1, a〉≈.

Clearly, minπ(a) �π mindbπ (a) and maxdbπ (a) �π maxπ(a) for every a ∈ Vk. It is easily seen that the
four mappings can be maintained incrementally, in the following sense. For f ∈ {min,mindb,max,maxdb},
a finite sequence π of consecutive pseudoconfigurations, and a pseudoconfiguration δ consecutive to the last
configuration in π, fπδ can be computed from fπ and δ in polynomial time. In addition to the four map-
pings, we need to maintain the sets of db-bound elements in π1 and πm. Specifically, let B1 = {c ∈ Vk |
〈1, c〉≈ is db-bound in π}, and B2 = {c ∈ Vk | 〈m, c〉≈ is db-bound in π}. Note that both sets may change
when a new pseudoconfiguration is appended to π. It is easily seen that B1 and B2 can also be incrementally
maintained.

We use the following non-deterministic PSPACE algorithms:

• Büchi-Next: on input (ψc̄
aux, s, σ), where s is a state ofAψc̄

and σ is a truth assignment to the propositions
in ψc̄aux, the algorithm returns a state s′ of Aψc̄

such that 〈s, σ, s′〉 is a transition in Aψc̄
.

• Pseudorun-Next: given as input a configuration τ in a C-pseudorun of Γ, output a possible next configu-
ration τ ′ in the pseudorun.

The algorithm now proceeds as follows:

1. flag := 0;

2. set τ0 to an initial configuration of a C-pseudorun of Γ;

3. initialize each of the mappings f ∈ {min,mindb,max,maxdb} to fτ0 , and B1,B2 to the set of db-bound
elements in τ0;

4. set s0 to some output of Büchi-Next(ψc̄, q0, σ(τ0)), where q0 is the start state of Aψc̄
;

5. set (s, τ) to (s0, τ0);

6. if flag = 0 and s is an accepting state of Aψc̄
then non-deterministically continue or set (s̄, τ̄) to (s, τ) and

set flag:= 1;

7. set τ to Pseudorun-Next(τ) and update min,mindb,max,maxdb, B1 and B2;

8. set s to Büchi-Next(ψc̄, s, σ(τ));

9. if flag = 1, (s, τ) = (s̄, τ̄), and the following conditions are satisfied:

• B1 = B2 (let B = B1 = B2);

• for each a ∈ B, min(a) is undefined or a ≺τ min(a), and max(a) is undefined or max(a) ≺τ a,

35

• for each a ∈ Vk − B, mindb(a) is undefined or a ≺τ mindb(a), and maxdb(a) is undefined or
maxdb(a) ≺τ a;

output YES and stop. Otherwise, go to 6.

Clearly, the above nondeterministic PSPACE algorithm outputs YES iff there exists a finite prefix of a C-
pseudorun of Γ satisfying the conditions of Lemma B.11. This in turn happens iff there exists a db-periodic
C-pseudorun of Γ accepted by Aψc̄

. Finally, in view of Lemmas B.10 and B.4, this holds iff there exists a run
of Γ satisfying ψc̄.

Observe that if the arity of relations in the schema of Γ is not bounded, the above algorithm is in EX-
PSPACE. This establishes the upper bound in Theorem 3.3. The PSPACE-hardness (in the case of fixed arities)
is a straightforward reduction from Quantified Boolean Formula [14], similar to the proof in [32] (details are
omitted).

C Proofs of Section 4

Proof of Theorem 4.1 The proof is by reduction from the Post Correspondence Problem (PCP), known to
be undecidable [29]. Consider an instance of the PCP, i.e. two sequences of non-empty words u1, . . . , uk
and v1, . . . , vk over alphabet {0, 1}, for k > 0. Recall that a solution of the PCP is a sequence of indexes
i1, . . . , in ∈ [1, k] such that ui1 . . . uin = vi1 . . . vin . We construct a guarded, singleton, hybrid-attribute artifact
system Γ with one relational attribute, and an LTL-FO formula ϕ, such that Γ |= ϕ iff there is no solution to the
PCP instance. Adapting our notation for singleton artifact systems to hybrid-attribute systems, we denote Γ by
〈DB, R, S, π, ψR, ψS〉 (there are now separate post-conditions ψR and ψS for R and S, and no state rules). We
now describe Γ informally. The database DB represents a directed graph whose nodes are labeled by 0, 1. To
this end, DB consists of a binary relation E for the edges, and a unary relation One representing the labeling
(One(v) means v is labeled 1 and ¬One(v) means v is labeled 0). The relational attribute set S has a single
attribute (so S holds a set). Intuitively, the role of S is to help identify a simple path within E. Once this is
done, the labels along the path determine a word w over {0, 1}. Then it remains to guess a parsing of the word
as ui1 . . . uin and simultaneously as vi1 . . . vin for some n > 0 and ij ∈ [1, k], 1 ≤ j ≤ n. We now provide
more details.

The tuple attribute set R consists of six attributes: Stage, Last, Last′, Index, Lu, Lv . Intuitively, Stage is
used to identify different stages in the simulation, so essentially serves as a finite-state non-deterministic control.
Last and Last′ are used in the construction of the path, and Index, Lu and Lv are used in the matching phase.
We begin with the construction of the simple path in E, beginning at a designated node start ∈ D. Edges are
added to the path non-deterministically, one at a time. The most recently added node is held in the attribute Last,
initialized to start. Attribute Last′ lags one step behind Last (so holds the next-to-last node added to the path).
The set S is initialized to contain start and all nodes x for which 〈x, start〉 ∈ E. Last, Last ′ and S are then
updated inductively as follows. The update occurs in alternation, first for Last and Last ′, and then for S (this is
controlled by attribute Stage). If Last = y, then the value of Last in the output is an arbitrary z 6= y such that
〈y, z〉 ∈ E and z 6∈ S (and the value of Last′ becomes y). Next, S is updated by adding to it all nodes x 6= y
for which 〈x, z〉 ∈ E, as well as all nodes x 6= z for which 〈y, x〉 ∈ E (z and y are available in Last and Last ′,
respectively). This is repeated until it is ended non-deterministically (using attribute Stage). Note that at the end
of this stage, S uniquely determines a simple path P in E from start to the node in Last.

The next stage consists of matching P to a solution of the PCP. We use two attributes Lu, Lv of R to hold,
respectively, the last nodes of P reached by u-words and v-words (both Lu and Lv are initialized to start).
These are updated inductively as follows. First, we guess an index i ∈ [1, k] using the attribute Index of R.
Then we advance Lu along P by |ui| nodes so that the labels spell ui, and Lv by |vi| nodes along P so that the
labels spell vi (this is specified in the post-condition for R). If at any point Lu and Lv contain the same node

36

e 6= start, then a successful matching has been found. If this happens in a configuration, the configuration is
repeated forever. Note that otherwise all partial runs of Γ block after finitely many steps.

Clearly, the PCP has a solution iff there exists an (infinite) run of Γ. Let ϕ be the LTL-FO property false.
Thus, the PCP has no solution iff Γ |= false. �

37

