Provenance-directed Chase& Backchase

Alin Deutsch*and Richard Hull

Abstract

The Chase&Backchase algorithm for rewriting queries using views is
based on constructing a canonical rewriting candidate called a universal
plan (during the chase phase), then chasing its exponentially many sub-
queries in search for minimal rewritings (during the backchase phase). We
show that the backchase phase can be sped up significantly if we instru-
ment the standard chase to maintain provenance information. The par-
ticular provenance flavor required is known as minimal why-provenance in
the literature, and it can be computed by exploiting the analogy between
a chase step execution and query evaluation.

1 Chase&Backchase

The Chase&Backchase (C&B) is an algorithm for rewriting queries using views
while exploiting integrity constraints. It was introduced in [DPT99] for queries
and views expressed as conjunctive queries (CQ) and integrity constraints ex-
pressed as embedded dependencies [AHV95] ([DPT99] extends the C&B to con-
junctive queries over complex-valued and OO data models, which we do not
treat here).

The C&B algorithm is based on expressing the view definitions as a set V of
embedded dependencies, then chasing with these as well as with the integrity
constraints Z. Let us denote the result of chasing a query @ with a set of
embedded dependencies D as QP. !

The C&B algorithm proceeds in two phases:

Chase: The input query @ is chased with the view constraints V and in-
tegrity constraints Z, to obtain a chase result @Q¥“Z. Next, the subquery U of
QVV7T is produced by restricting QYT to the vocabulary of views. U is called
the universal plan U.

*This author was supported by the NSF under grant 1IS:1117527.

1We confine ourselves here to the case when the chase terminates, thus yielding a finite
result. It is well-known that this result is not necessarily unique, as it depends on the non-
deterministic choices made during the chase sequence among simultaenously applicable chase
steps. However, the result is unique up to homomorphic equivalence [AHV95], which suffices
for our purposes. We will therefore refer to “the” chase result in the remainder of this paper.

Backchase: The subqueries of the universal plan U are checked for equiva-
lence (under Z and V) to @, and all equivalent subqueries are output (as long as
they are minimal, i.e. contain no subqueries that are already equivalent to Q).
The equivalence check involves chasing each subquery sq “back” to @ (more
precisely, checking that @ has a containment mapping into sq”“7).

We illustrate the C&B algorithm on the following running example (for sim-
plicity, without integrity constraints).
Example 1.1 Consider the query
Q(.’L‘) : _R(Iv w, y)a S(yv Z)a T(Za u)

and assume that the following views have been defined:

VR(-’I;,y) P R(x,w,y)
VS’(yvz) L S(y,Z)
VRS(IE,Z) . R(x,w,y),S(y,Z)
VT(Zau) R T(z,u)
It is easy to see that
Rl('r) L VR(x,y),Vs(y,Z),VT(Z,u)
Ry(z) :— Vgs(x,z),Vr(z,u)

are equivalent rewritings of Q using the views. Also, each rewriting is minimal,
in the sense that mo atom of its definition can be removed while preserving
equivalence to Q.

To find these rewritings, the C&B algorithm prescribes capturing the view
definitions by a set V of embedded dependencies. These are obtained canoni-
cally by stating the inclusion (in both directions) between the result of the query
defining each view and the view’s extent. For the example, V is the following
set of dependencies (as usual in the literature, free variables are to be read as
universally quantified):

CVg ¢ R(l‘7wvy) — VR(xay)
bVR . VR(.’L’,y) — Jw R(m,w,y)
Cyg : S(ya Z) - VS(ya Z)

bVS : VS(yaz) — S(y7z)

CVgs * R(wi7y) /\S(y,Z) — VRS(I’,Z)

bVRs : VRs(I,Z) — Elw,y R(x,w,y)/\S(y,z)
Cvy T(z,u) = Vr(z,u)
by, : Vr(z,u) = T(z,u)

The chase phase. When chasing Q) with V, the only chase steps that apply
involve vy, Cvs, Cvy, Cvng, Yielding chase result

QV(x) : —R(.’E, w, y)7 S(ya Z)7 T(zv U), VR(:E7 y)a VS(% Z)v VT(Zv U), VRS(I.v Z)
The restriction of QY to the schema of the views yields the universal plan

U(z): —Vr(z,y),Vs(y, 2), Vr(z,u), Vrs(z, 2).

The backchase phase. In this phase, the subqueries of U are inspected. No-
tice that Ry, Ry above are among them.

We illustrate only for the sugbquery of U corresponding to Ry. To show that
Ry is equivalent to @, we chase Ro with V and we search for a containment
mapping from Q into RY. The only applicable chase steps involve by, by,
yielding the result

Rg(x) : —Vrs(x, 2), Vr(z,u), R(x,w,y), S(y,2), T(z,u).

Since the identity mapping on variables is a containment mapping from Q to
RY, Ry is equivalent to Q, and thus a rewriting. Ry is moreover minimal, since
none of its subqueries is a rewriting of Q (the backchase checks this). Ra is
therefore output by the C&B algorithm.

Ry is discovered analogously.

It turns out that there are no other minimal rewritings of Q). The backchase
phase determines this by systematically checking the other subqueries of U, but
discarding them as not being equivalent to @), or not being minimal. For in-
stance, the subquery

sq(x) : =Vg(x,u), Vr(z,u)

is not a rewriting of @, and the subquery
Sq/(.'II) : _VS(ya Z), VT(Zv U’)a VRS<xa Z)

18 a rewriting but is not minimal.

Completeness of the C&B Algorithm. The fact that rewritings R; and
R5 in Example 1.1 are discovered among the subqueries of U is not accidental.
In [DPT99], it was shown that all minimal rewritings of @ are (isomorphic to)
subqueries of U, in the absence of integrity constraints. The result was extended
to the presence of integrity constraints expressed as embedded dependencies as
long as the chase with them terminates (Theorem 1 in [DT03b]; the proof can
be found in [Deu02]; see also [DPT06]). The result was further extended to
queries and views expressed as unions of conjunctive queries, and disjunctive
embedded dependencies [DT03b, Deu02].

Implementation of C&B rewriting. The first C&B implementation is de-
scribed in [PDSTO00], where the backchase phase is identified as the performance
bottleneck. This is expected, since exponentially many subqueries of the univer-
sal plan are checked for equivalence with the original query, and each equivalence
check involves a chase. While [DPT99] shows that this brute-force search is op-
timal from a complexity-theoretic point of view, [PDSTO00] concerns itself with
practical feasibility and proposes techniques for pruning the search while pre-
serving completeness. Essentially, these boil down to enumerating subqueries
of the universal plan U in a bottom-up fashion, starting with all single-atom
subqueries, next with two-atom subqueries, etc. Since the backchase searches
for minimal rewritings, this bottom-up strategy allows pruning the equivalence
check for all subqueries sq of U that already include a rewriting as subquery,
since all such sq are non-minimal. In Example 1.1, subquery sq’ would be pruned
this way.

Even with bottom-up pruning, exponentially many subqueries remain to be
chased in the worst case. In practice, this worst case occurs often, for instance
when there is no rewriting of the query using the views. In this case the pruning
never kicks in and all possible subqueries of U need to be checked. To deal with
this case, [PDSTO00] proposes first checking that @ has a rewriting, before even
starting the subquery enumeration. This check is performed as follows.

A corollary of the completeness of the C&B algorithm states that @ has
a rewriting using the views if and only if it has a containment mapping into
U’ = UYYZ, ie. into the result of chasing the universal plan U with the de-
pendencies in V and Z. In practical implementations (e.g. in [PDSTO00]), the
existence of a containment mapping from @ into U’ is checked by treating U’
as a small symbolic database instance (known as “canonical” instance in the
literature [AHV95]), and evaluating @ over it. This amounts to computing the
set of all containment mappings from @ into U’, and checking its non-emptiness.

Example 1.2 Revisiting Example 1.1, a possible chase sequence of U with V
involves, in order, chase steps with brs,br,bs and by, yielding

Uv(a:) :— Vgr(x,y),Vs(y, 2), Vr(z,u), Vrs(x, 2),
R(wilvy)vs(y’Z)vT(Zvu)vR(xaw27y2)7s(y272)~

If we evaluate Q over the canonical instance of UY, we obtain the containment
mappings hy = {x = z,y = y,w — w1,z +— z,u = u} and hy = {x — z,y —
Y2, W — wa, 2 — z,u — u}. Therefore, U is a (redundant) rewriting of Q, and
it makes sense to start inspecting its subqueries in search of minimal rewritings.

[PDSTO00], and the follow-up work in [DT03a] show that the effort of chasing
U itself is in practice comparable to that of chasing any subquery of U, since
the chase can be made particularly fast by implementing it as query evaluation
over a canonical database of toy dimensions. The rewriting existence check is
therefore shown to be well worth the effort: it bounds the overhead to an expo-
nential fraction of the backchase runtime and yields up to exponential speedup
(realized whenever there is no rewriting).

[PDSTO00] also presents a suite of techniques which further prune the search,
when instead of all minimal rewritings one only seeks a cheapest rewriting ac-
cording to a cost estimator. This setting is relevant in query optimization. It is
shown how cost estimation can be interleaved with the bottom-up backchase. If
the cost model satisfies reasonable assumptions like monotonicity, the resulting
algorithm is shown to preserve the guarantee of finding a cheapest rewriting
while pruning all subqueries whose cost exceeds the best found so far, even
without chasing them to check if they are rewritings. In this paper we do not
concern ourselves with cost-based pruning, focusing on enumeration of all min-
imal rewritings.

2 Provenance-Directed C&B

The remainder of this paper shows that significantly more can be done to prune
the search for all minimal rewritings while preserving completeness, assuming
that the chase procedure used in the backchase phase is instrumented to main-
tain provenance information.

Intuitively, the original backchase enumerates the subqueries of the universal
plan U in a bottom-up fashion and chases each of them in isolation from the
others, to determine equivalence to the input query (). This leads to redundant
chasing of the atoms occurring in common within distinct subqueries of U. It
also leads to fruitless chasing when the chosen subquery ends up not being
equivalent to Q.

Example 2.1 In our running example, the bottom-up backchase search prunes
all strict superqueries of Ry, Ry except U. This leads to pruning subqueries
Ve ANVis AVr and Vg A Vg A VT.2

In addition, the backchase will prune those subqueries that do not contain
the universal plan’s head variables, as only safe rewritings are of interest (e.g.
it will prune Vg, and Vs A Vp).

However, the backchase still carries out fruitless chases of the following 7
subqueries of U

VR7VR57
VR AVs, VR AV, VR AVRs, Vs A Vgs,
Vr A Vs A Vgs

only to determine that none of them are rewritings of Q.

One might wonder why the backchase won’t more aggressively prune away all
subqueries that don’t even mention all relations mentioned by Q. In our exam-
ple, this would immediately dismiss all 7 subqueries listed above. Note that this

2To avoid clutter, in the running example we specify universal plan subqueries by men-
tioning only the view names of involved atoms. This is not ambiguous since U contains no
distinct atoms with the same view name. We also omit the specification of the distinguished
variables, as these are in all cases (z).

aggressive pruning is unsafe in general, in the sense of compromising complete-
ness of the backchase. Indeed, if the set of constraints includes tuple-generating
dependencies (such as foreign key constraints), the minimal rewritings do not
necessarily mention all relations mentioned by the query. It is easy to construct
such examples: for instance, assume that the second component of S is a foreign
key referencing the first component of T. Then subqueries Vg A Vg and Vig are
minimal rewritings that would be missed by the aggressive pruning.

Notice how, across rewritings R and Rs, the common Vp atom is chased
redundantly multiple times (once when chasing U, then again when chasing Ry,
and also when chasing Ry, and in the fruitless chases of the three above-listed
subqueries involving V).

Our aim is to minimize both fruitless and redundant chasing.

The solution we propose starts from the observation that, while chasing the
universal plan U to check the existence of a rewriting, we simltaneously chase
all of its subqueries, though not in isolation as in original backchase, but collec-
tively. This collective chase will duplicate all chase steps of the isolated chases,
possibly enabling strictly more chase steps that result from the interaction be-
tween simultaneous chases of the subqueries. More formally, the nature of the
chase implies the following fact:

Fact 1 The union of the results of chasing each subquery of U in isolation maps
homomorphically into the result of chasing U itself.

Fact 1 follows immediately from the fact that all chase steps that fire on an
isolated subquery of U also fire on its isomorphic copy in U.

Now note that each containment mapping image i of () in U’ must have been
introduced because of the presence of certain atoms in U (which induce a sub-
query of U). But by Fact 1 above, those subqueries of U who do not contribute
to the creation of an image of) even when chased collectively with the other
subqueries, will certainly not do so when chased in isolation. Therefore, they
cannot be rewritings of (). Our goal is to dismiss these subqueries immediately,
without chasing them in isolation, thus saving the effort when compared to the
original backchase. As it turns out, we can do even better than that, avoiding
the redundant effort across isolated chases of the remaining subqueries.

To this end, we propose a new backchase strategy that keeps track of the
provenance of each atom a in U’, where the provenance of a gives the set(s) of
view atoms from U whose chasing led to the introduction of a into U’. This
provenance information enables us to run @ over the canonical instance of U’,
identify each image 4 of @ into U’, and trace it back to the subquery sq of U
that is responsible for the creation of ¢ during the chase of U. The search for
rewriting candidates thus confines itself to the set of provenances of the images
of @ into U’. This set is significantly smaller than the set of all subqueries of
U. Indeed, in most cases we have encountered in practice, the backchase was
exploring a large fraction of the exponentially many subqueries of U, even when
there were only very few minimal rewritings.

Example 2.2 We illustrate by revisiting Example 1.2. We show again U,
this time annotating the atoms of UY with their provenance in terms of the
view atoms in U. Since U contains no two atoms using the same view name,
we drop the wvariables from the provenance annotation, to avoid clutter. The
provenance annotations appear as superscripts.

Vr Vs Vr Vrs
v —l
U (.17) P VR(x,y),VS(y,z),VT(z,u),VRS(x,zL
Vr Vs Vr Vrs Vrs

——t— A~ ——
R(Jf,U)l,y),S(y,Z),T(Z,U),R(l‘,UJg,yQ),S(yg,Z) .

Note that the view atoms in UV are annotated with themselves, as they are
not introduced by chasing, but instead inherited directly from U. The R,S,T
atoms in UY are introduced by the chase, for instance the first R atom stems
from chasing Vg (z,y) with view dependency by,,, while the second R atom stems
from chasing Vrs(x, z) with by, .

Recall from Example 1.2 that Q has precisely two containment mapping im-
ages into UY: one given by hy, comprising the T atom and the first R and
S atoms, and another given by hs, comprising the T atom and the second R
and S atoms. The provenance of the first image of Q is Vg A Vs A Vp, which
corresponds to rewriting Ry in Example 1.1, while the provenance of the second
image is Vpr A Vgg, corresponding to rewriting Ry in the running example.

Notice how by computing the containment mappings of Q into UV (a step that
is already carried out in the original C&B algorithm), we immediately identify
the two rewritings of Q, saving the fruitless individual chases of the subqueries
listed in Example 2.1.

Also notice how, across the two remaining subqueries, Ry and Rs, the com-
mon Vr atom is only chased once and for all when chasing U, saving the redun-
dant chasing that would have resulted from chasing Ry and Ry in isolation (as
prescribed by the original backchase).

2.1 Provenance-Aware Chase

We next detail the notion of provenance formula and how to instrument the
chase to keep book of provenance information. We call the resulting chase
provenance-aware. The proposed bookkeeping exploits the analogy between
chase step application and query evaluation, with the chase-maintained prove-
nance paralleling the minimal why-provenance flavor introduced for query eval-
uation in [BKT01].3

Intuitively, the provenance of an atom a is meant to specify the universal
plan subqueries whose chase constructs atom a. This information is captured
in the form of expressions obtained by starting with universal plan atoms as
terms and combining them using logical conjunction and disjunction. To define

3This analogy is already exploited in the original C&B implementation, to speed up stan-
dard chase step evaluation.

the provenance of an atom in the chase result, we introduce some notation first.
Given an atom a, its provenance formula is denoted as 7(a). For set/conjunction
of atoms A, the provenance is the logical conjunction of the provenances of A’s
elements: m(A) = A\, 7(a).

We define the provenance-aware chase only for embedded dependencies cor-
responding to tuple-generating dependencies (tgds), i.e. dependencies in which
the conclusion of the implication contains no equality atoms [AHV95]. This
leaves out equality-generating dependencies (egds) which we do not treat here
for simplicity sake. Notice that all dependencies in V are tgds, and in gen-
eral tgds can express such integrity constraints as inclusion dependencies and
beyond, but cannot express key constraints and functional dependencies in gen-
eral.

Provenance-aware Chase Step. The provenance-aware chase of the uni-
versal plan builds provenance formulae inductively as follows:

e For each atom a of the universal plan U, let w(a) = a.

e Let p be an instance. Let d be a tgd of the form
d: premise(T) — 3y conclusion(Z,y)

where premise and conclusion are conjunctions of relational atoms and Zz,
g are vectors of variables. Let h be a homomorphism from premise into p.

We say that the chase step of p with d under h does not apply if there is
an extension h of h to a homomorphism from conclusion into p, such that
7(h(premise)) implies 7(h(conclusion)).

If the chase step does apply, then it yields p’ obtained from p by adding new
atoms precisely as the standard chase would, and annotating each of them
with 7(h(premise)). If p already contains atom a with provenance p;, and
the chase step introduces atom a with provenance ps, this is represented
in p’ by keeping a single copy of a, with provenance p; V ps.

Note that the provenance-aware chase constructs atoms just like the standard
chase, but annotates them with provenance formulae, and has a more refined
step applicability test. In the standard chase a step with tgd d under homomor-
pism h does not apply when the conclusion is already witnessed by atoms in p.
In contrast, in the provenance-aware chase, we need to further make sure that
these witness atoms of d’s conclusion stem from the same view atoms whose
chase yielded the image under h of d’s premise.

Also note that the provenance formulae use logical conjunction and dis-
junction with their expected properties such as commutativity, distributivit,
idempotence and absorption. This corresponds to the minimal why-provenance
of [BKTO1] and is a particular case of a provenance semiring [GKT07].

2.2 Provenance-directed Backchase

Once the universal plan U is provenance-aware-chased into result U’, it is easy to
“read oft” the subqueries of U (if any) that chase into results that accommodate
containment mappings from (. These subqueries are rewritings of @ using the
views.

To find them, we simply run @ over U’ to compute all containment mappings
from former to latter. We denote their set with H. For each containment
mapping h € H, the provenance information of @’s image under h, 7(h(Q), gives
the subquery of U whose chase led to this image (and therefore is a rewriting
of Q). Let us denote this set of rewritings as R = {w(h(Q)) | h € H}. It can be
shown that set R contains all minimal rewritings of @ using the views, but it
may also contain some non-minimal rewritings. These are easily identified, as
they contain as subquery some other rewriting from R. The provenance-directed
backchase purges these rewritings from R and returns the result.

The above processing can be equivalently cast in terms relating to querying
provenance-annotated databases:

The provenance-directed backchase consists in running @ over the canonical
instance of U’ while keeping track of the minimal why-provenance [BKTO01] of the
result. The provenance of the tuple corresponding to @’s distinguished variables
corresponds straightforwardly to subqueries of U, all of which are returned.

Example 2.3 Recalling Ezample 2.2, the provenance of tuple (z) in the answer
of Q over UY is (VR AVs AVp)V (Vrs AVr), which is minimal (neither conjunct
contains the other). Each of the conjuncts corresponds to a rewriting of Q: the
first to Rs, the second to R;.

2.3 Putting It All Together

We summarize the provenance-aware C&B below.

algorithm C&B%,
params: set V of CQ views, captured using set V of tgds,
set Z of integrity constraints expressed as tgds with terminating chase

input: CQ query Q,
output: all minimal CQ rewritings of () using views from V under 7

//chase phase:
1. compute universal plan U
by standard-chasing) with YV UZ and keeping only view atoms

//provenance-directed backchase phase:
2. compute U’ by provenance-aware-chasing U with VUZ
3. run Q over U’, computing the
minimal why-provenance of the tuple corresponding to (Q’s head variables.
4. return the subqueries of U defined by this provenance.

We can show that the directed backchase preserves completeness:

Theorem 2.1 If the set of integrity constraints I consists of tgds only (with
terminating chase), then the provenance-directed C&B is sound and complete.
That s, C&B%, finds all and only the minimal rewritingsof the input query using
the views V under Z.

3 Conclusion

Chase step execution is in essence query evaluation, and therefore there is a
natural way to extend the standard chase to be provenance-aware. This exention
is particulary useful when the chase is employed within the C&B algorithm for
rewriting queries using views. By using provenance-aware chasing during the
C&B’s backchase phase, we can directly “read” the rewritings from the result
of chasing back the universal plan U, thus saving the effort of running isolated
chases for exponentially many subqueries of U.

Note that instrumenting the standard chase to keep provenance information
introduces ovehead at runtime. We expect this overhead to be negligible, being
more than made up for by the performance savings over the standard backchase.
Definitive confirmation requires experimental evaluation, which we leave for
future work.

Acknowledgement

This work is dedicated to Peter Buneman. Both the C&B project and the
provenance project starting with [BKTO01] originated in Penn’s Database Lab.
At the time, Peter was playing a key leadership role in the lab, and the first
author was a graduate student educating himself on the chase by reading the
chapter in [AHV95] written by the second author.

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[BKTO01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and
where: A characterization of data provenance. In ICDT, pages 316—
330, 2001.

[Deu02] Alin Deutsch. XML Query Reformulation Over Mized and Redundant
Storage. PhD thesis, University of Pennsylvania, 2002.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data indepen-
dence, constraints, and optimization with universal plans. In VLDB,
pages 459-470, 1999.

10

[DPT06]

[DT03a]

[DT03b)]

[GKTO7]

[PDSTO00]

Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation
with constraints. SIGMOD Record, 35(1):65-73, 2006.

Alin Deutsch and Val Tannen. Mars: A system for publishing xml
from mixed and redundant storage. In VLDB, pages 201-212, 2003.

Alin Deutsch and Val Tannen. Reformulation of xml queries and
constraints. In ICDT, pages 225-241, 2003.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, pages 31-40, 2007.

Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A
chase too far? In ACM SIGMOD Conference, pages 273-284, 2000.

11

