
Amoeba Join: Overcoming Structural Fluctuations in
XML Data

Taro L. Saito
University of Tokyo
JSPS Research Fellow

leo@cb.k.u-tokyo.ac.jp

Shinichi Morishita
University of Tokyo

moris@cb.k.u-tokyo.ac.jp

ABSTRACT
There are no universal rules for organizing data in XML.
Consequently, semantically identical XML documents may
have different structures; we call this structural fluctuation
in XML. Finding all the structural fluctuations in an XML
document requires verbose path expression queries. To over-
come this problem, we developed a novel query processing
primitive, called amoeba join. Amoeba join does not re-
quire explicit path structures in query statements; tag names
or keywords are sufficient to perform searches. This paper
introduces several amoeba join processing algorithms and
demonstrates their performance.

1. INTRODUCTION
XML is now a global standard for describing structured

data. In 2005, many vendors, including the Big Three sup-
pliers of relational databases (IBM, Microsoft, and Oracle),
launched new XML database engines. This trend will cer-
tainly result in increased XML capability, not only as a text
format, but also as data stored in database management sys-
tems (DBMSs). The potential handling size and capacity of
XML data is huge. Nevertheless, inconveniences have al-
ready materialized during the evolution toward this reality.
Before the databases are explored using queries, it is difficult
to find target elements because such large XML databases
have complex and unclear path structures. In addition, it
is difficult to write a query without knowledge about path
structures.

A summary of path structures such as DataGuides [3]
shows all existing paths in an XML database, but this is
not sufficient to comprehend the actual structure of data
in the target context; a path occurring in one context may
not appear in a different context. An XML schema resolves
this uncertainty in path occurrence to some extent, but not
entirely. Since the XML schema allows the optional appear-
ance of elements, unlike schemata in relational databases,
path structures may still vary depending on context.

An XML document without a schema is like a black box
for the user, but writing path queries for specific contexts
is very difficult. In contrast, relational databases require
schemata, making it considerably easier to find tables of the
required data. Therefore, considerable effort and intensive
research has been put into XML structure indices, allow-
ing the processing of descendant axis queries that require

Copyright is held by the author/owner.
Ninth International Workshop on the Web and Databases (WebDB 2006)
June 30, 2006, Chicago, Illinois

less structural knowledge. However, this trend might not
be addressing the real goal. People are enthusiastic about
querying data structures, when they should be focusing on
structured data. If we pursue writing paths in order to per-
form queries, we must first somehow acquire knowledge of
path structures. To find the path structure for some specific
context, we must issue queries to a ’black box’ database.
This is a chicken-or-egg situation — which comes first, the
path structure or the query?

One way to overcome this problem is by relaxing XPath
queries [1]. For example, the XPath query org/manager can
be relaxed to org//manager by replacing the parent-child axis
with the ancestor-descendant axis. This process reduces the
burden of writing exact path query matches. However, the
following example illustrates a problem not normally iden-
tified in the context of query relaxation:

<org department="head office">
<manager>David</manager>
<location>Tokyo</location>

</org>

⇒
<manager person="David">
<org department="head office">

<location>Tokyo</location>
</org>

</manager>

Figure 1: An example of structural fluctuation

The two XML fragments shown above (Figure 1) repre-
sent data with the same meaning, but with different struc-
tures: the hierarchical order of org and manager tag is re-
versed. We call this structural fluctuation in XML. It is a
structural variation in XML fragments that have the same
elements (e.g., org and manager) and different structures.

XPath can track structural fluctuations, using disjunc-
tion in path patterns. For example, finding element pairs
of org and manager in Figure 1 requires the concatenation
of at least two types of XPath query; /org/manager and
/manager/org. In general, however, query statements become
more complex because there could be many more elements
to query and structural fluctuations in the document. Thus,
the number of XPath expressions required to cover all pos-
sible path structures can easily balloon. For example, the
number of query trees required to cover all structural fluc-
tuations consisting of org, manager, and location elements is
33−1 = 9 (Figure 2) because it is identical to the enumera-
tion of all labeled trees with n nodes, when the differences
in axis (// or /) are ignored. Its enumeration size is known
to be nn−1. Concatenating all nn−1 query trees into a single
regular path expression can be a daunting task.

Our research was motivated by this inconvenient method
of path expressions. In this paper, we introduce the no-
tion of an amoeba, which represents an equivalent class of



org

manager location

org

manager

location

org

location

manager

manager

org location

manager

org

location

manager

location

org

Figure 2: An amoeba (org, manager, location) covers
nn−1(32 = 9) structural fluctuations.

structural fluctuations. An amoeba (org, manager, location)

groups XML fragments that match one of the query trees
illustrated in Figure 2. Applying this notion of an amoeba,
we devised a novel query-processing method, amoeba join,
which makes it possible to query XML databases without
explicitly specifying path structures; tag names (and key-
words) are sufficient to perform searches.

Even when using a schema or DataGuides [3], learning
the entire XML data path structure is more difficult than
creating a list of all types of tag and attribute names. We in-
vestigated a benchmark XML document provided by XMark
[8] (scalability=1.0, 114 MB). The document contained 83
tags and attribute names and 548 distinct paths. Therefore,
database users should have much more information on tags
and attributes than path structures, which may differ de-
pending on context. This is why query processing without
explicit path structures, which is achieved by amoeba join,
is promising.

This paper makes the following contributions:

• It introduces amoeba join as a method to capture struc-
tural fluctuations in XML data without explicitly spec-
ifying them using path queries.

• It presents three essential amoeba join processing al-
gorithms and their experimental evaluations.

Semantics of XML Structure
Here, we demonstrate that XML structure provides surpris-
ingly few semantics, clarifying the need to handle structural
fluctuations in XML. First, consider the encapsulation of
data with a tag. This process is normally used to group
data elements or text data. In XML, it inevitably leads
to a structural hierarchy among the data elements, which
may or may not express high and low ranks. The following
XML example (Figure 3) represents organization data with
both superficial and semantic hierarchy order between the
managers David and Michael:

<org department="head office">
<manager> David </manager>
<org department="R&D">

<manager> Michael </manager>
</org>

</org>

Figure 3: Nested organization data

It is also possible to reverse the hierarchical order. In the
following example, the belongs to tag is used to switch the
hierarchical positions of the managers David and Michael
without losing the semantic relationship:

<org department="R&D">
<manager> Michael </manager>
<belongs_to>

<org department="head office">
<manager> David </manager>

</org>
</belongs_to>

</org>

Furthermore, when a tag is used to group elements, there
are generally no semantic ranks among the elements, as the
structural change of org and manager in Figure 1 illustrates.
The org element has the manager information, and vice versa.

Therefore, hierarchical order does not directly represent
the semantic relationship between data elements; seman-
tic relationships become clear only when they are explicitly
given. Consequently, it is natural to assume that XML data
with neither explicit semantics nor any schema may contain
some structural fluctuation. In our proposed method, we
assume that XML databases contain arbitrarily structured
information, and the user picks up node tuples matching
an amoeba. Then, the retrieved data is transformed into a
format designated by the the user.

The rest of this paper is organized as follows: Section
2 discusses the essential differences between the proposed
method and other related studies. Section 3 introduces the
notion of amoeba and amoeba join, and Section 4 presents
several amoeba join processing algorithms. Section 5 demon-
strates the performance of these queries. Finally, Section 6
presents our conclusions and directions for future work.

2. RELATED WORK
Querying an XML database without knowledge of path

structure was first addressed by [7], and refined by [11]. Both
studies used variations of the least common ancestor method
(lca) to find the smallest tree containing all target nodes.
Among the lca nodes that connect common node sets (tags
or keywords), the one that forms the smallest subtree is
defined as the smallest least common ancestor (slca) [11].
The precise definition of slca is as follows: given k node
sets D1, D2, . . . , Dk, for example, D1 and D2 are node sets
matching XPath //org, //manager, a node v belongs to the
slca if v ∈ lca(D1, . . . , Dk) and for all u ∈ lca(D1, . . . , Dk),
v is not an ancestor of u. In summary, a subtree rooted from
an slca node does not contain other lca nodes.

One problem with this approach is that the slca might
be the root node of an XML document. XML is a single
rooted tree, so every node set can be connected using the
root node. In addition, when the slca approach is applied
to the previous example (Figure 3) to find pairs of org and
manager elements, it misses the pair of org and manager David
because these contain the subtree rooted by the slca of org

and manager Michael. In general, XML data semantics are
too complex to be detected automatically using simple rules.
In addition, although the method of [11] is optimized to
search for slca nodes, it focuses mainly on keyword versus
database queries. It cannot detect element inclusion rela-
tionships. For example, it can find the keyword “Michael”,
but is not capable of assuring that “Michael” is contained
within the manager tag.

XRank [5] applies keyword-based search to XML. It lo-
cates XML elements that contains all given keywords. Un-
like slca, XRank is aware of recursion of XML structure.
However, it suffers from two drawbacks: (1) it does not dis-
tinguish tag name from textual content; (2) it cannot express
complex query semantics [7].

Finding an exact match in XPath queries can be diffi-
cult, and thus studies have investigated ways to relax the
condition of rigorous matching in regular path expressions
[1]. The types of relaxation are explained in [1]. These in-
clude dropping or weakening predicates or query nodes, and



company

org

department

"R&D"

manager belongs_to

"Michael"

manager

orgname

"head office""David"

manager

department

"HR"

org

"Lucy"

location

"Tokyo"
location

"Tokyo"

name

1

2

3

4

5

6

7

8

9

10 12

13

14

15

11

16

17

18

20

21

22

19

Figure 4: Amoeba join (org, manager, location = “Tokyo”)

adding an explicit disjunction, which is similar to query-
ing all structural fluctuations. The proposed amoeba join
method contains the essence of query relaxations, but is
novel in that it is also able to handle situations in which
the high and low nodes of a query tree are reversed.

DogmatiX [10] attempts to solve structural fluctuations
using nearest neighbor heuristics that connect nodes within
some metrics. However, the method cannot address all pos-
sible nn−1 structural fluctuations.

Approximate join [4] locates documents with similar struc-
tures and different forms. It is more general than amoeba
join because it includes changes in tag names. Although
approximate join can accommodate various similarity mea-
sures, it is optimized to tree edit distances, which must pre-
serve ancestor node order in a query; that is, unlike amoeba
join, it cannot reverse ancestor-descendant relationships.

Static typing of XML [2] is another way to handle struc-
tural fluctuation. It detects mismatches between paths de-
scribed in query statements and schemata. Such discrepan-
cies are reported as compile-time (static) errors of the query.
This prevents writing invalid queries that do not match any
document path. In other words, it is not necessary to cover
all path possibilities because the query compiler presents the
available paths. A major drawback of this approach, how-
ever, is that it still requires a schema, which is not manda-
tory in XML.

3. AMOEBA JOIN
The requirement of path structures within query state-

ments is a serious obstacle to using XML DBMSs. Amoeba
join is a method for overcoming this; problem by allowing
structural fluctuations in the underlying XML database, and
retrieving data matching the query of interest. This sec-
tion presents a definition of amoeba and our novel query-
processing method, amoeba join.

DEFINITION 1. [Amoeba Join] Let D1, . . . , Dk be do-
mains of XML nodes; then each Di(1 ≤ i ≤ k) repre-
sents a node set matching an XPath expression, an amoeba
join AJ(D1, . . . , Dk) gives a set of node tuples {(d1, . . . , dk)|
d1 ∈ D1, . . . , dk ∈ Dk, such that one of d1, . . . , dk is a com-
mon ancestor of the others}.

We call a node tuple t = (t1, . . . , tk) an amoeba (or an
amoeba tuple) if t ∈ AJ(D1, . . . , Dk). Its common ancestor
tr(1 ≤ r ≤ k) is called the amoeba root of t. See Figure

4 for an example of amoeba join using a tree representa-
tion of an XML document. When D1 represents a node
set belonging to a path expression ’//org’, D2 = ’//man-

ager’ and D3 = ’//location/text()=”Tokyo”’, respectively, an
amoeba join AJ(D1, D2, D3) gives a set of node ID tuples

{(2, 5, 13), (2, 8, 13), (21,15, 17)} (bold numbers represent
amoeba roots). This notion of an amoeba can be adapted
to various XML structures. It can capture the manager node
(8) even if it is under the belongs to tag (7), and it also tracks
location node (17) behind the department tag (16). Further-
more, amoeba join detects hierarchical change of orders be-
tween org (21) and manager (15) nodes.

Note that amoeba join is not a process of computing the
least common ancestors (lca) of a given node set. The lca
nodes of org, manager and location nodes in Figure 4 include
the root node, company (id = 1). Every node in XML can
reach the others through the root. For example, node 13
and 15, which are apparently irrelevant, can be connected
via the root. Therefore, the lca method is not appropriate
for finding relationships between nodes. Amoeba join is sim-
ilar to the lca method in that it finds a common ancestor;
however, it limits common ancestor nodes to those belong-
ing to one of the given query domains. By using this rule,
the relationships among nodes are bound to a common an-
cestor, i.e., the amoeba root. The tuple (11, 8, 13) in Figure

4 is not an amoeba because its nodes are not bound, while
the other amoeba tuples are bound by 2 or 15. If there is no
such bound, as in the lca method, the relationships among
the connected nodes are very weak.

When the root node of XML happens to be contained in
one of the domains, any node tuple becomes an amoeba. In
general, such a query is no use. If the root node is required
in order to specify the context of queries, ameba join with
context nodes AJC(context nodes, D1, . . . , Dk) is preferable.
It restricts the search region of the query under the specified
context nodes.

The result of AJ(org, manager, location = ”Tokyo”) in Fig-

ure 4 has node overlaps in (2, 5, 13) and (2, 8, 13). They
differ in manager nodes 5 and 8. Intuitively, the tuple of
(2, 5, 13) is preferable as a query result. However, if the user
wants to list all of the managers at the Tokyo location, the
pair (2, 8, 13) is also meaningful. Therefore, filtering the re-
sults should be left to the user. If the user wants nodes that
are close to each other in the tree structure of XML, the
nearest-neighbor measure method can be used to filter the
results. This filtering encounters problems in detecting the
semantics of the XML structure, but this issue should be
discussed separately, with the handling of structural fluctu-
ation. Amoeba join is a query-processing technique to be
employed before applying such semantic or heuristic filters.

Amoeba Join Syntax
Here, we introduce syntax of amoeba join expressions:

S := “(” E (, E)* “)”
E := F | $variable := F | S
F := XPath-expr (P <value>)? | <value>
P := ⇒ | = | 6= | < | > | ≤ | ≥

To make expressive queries for extracting valuable informa-
tion, we extended amoeba join to incorporate XPath expres-
sions. For example, an amoeba join expression (org, manager)
collects all pairs (amoebas) of org and manager elements that
have ancestor-descendant relationships. Amoeba join can
also be used with explicit path queries. (/org, ”David”) com-
putes amoebas that have org nodes directly under the root
node, and text nodes with a value of David. To express a
node x such that a text y occurs in the subtree rooted at x,
we provide the statement x ⇒ y. For example, the expres-



sion manager⇒ ”David” designates the manager tag containing
the text node ”David”, whether it is a child or descendant
node of the manager node.

We also offer another operation that allows nodes to be
bound to variables. For example, ($x = org, $x/manager, lo-

cation) joins org nodes and its child manager nodes to location

nodes.

4. AMOEBA JOIN PROCESSING
Amoeba join processing locates node tuples composing

amoebas, from given node domains (D1, . . . , Dk). There-
fore, amoeba join processing is independent of node retrieval
from databases. This independence is important because it
enables amoeba join to be incorporated into other existing
query-processing techniques.

In the algorithm descriptions that follow, we assume that
every XML node is labeled with an interval (start, end) [6].
A pair of two arbitrary intervals is disjoint; one subsumes
the other as a subrange. By encoding XML tree structure hi-
erarchy in the form of an interval tree, detecting of ancestor-
descendant relationships between two nodes becomes a con-
tainment test of two intervals, i.e. a node vi is an ancestor
of another node vj iff vi.start < vj .start ∧ vj .end < vi.end.

First, we describe a process to determine whether a given
node tuple is an amoeba. The function isAmoeba(t) receives a
node tuple t = (t1, . . . , tk), and returns true if it finds a node
interval in t with the smallest start value that completely
contains the other intervals. Such an interval is the common
ancestor of the others; i.e., this node tuple constructs an
amoeba.

Brute-force Amoeba Join
With the decision function isAmoeba(t), we can write a simple
brute-force amoeba join processing algorithm (Algorithm

1). This brute-force version computes all permutations of
the input sets, but is apparently inefficient.

Algorithm 1 Brute-force Amoeba Join Algorithm

Input: Node sets D = (D1, . . . , Dk)
Output: A set of amoebas R
1: R ⇐ nil
2: for all node tuple t in the permutation of D do
3: if isAmoeba(t) then
4: push t into R
5: end if
6: end for
7: return R

Two more efficient amoeba join algorithms are detailed
below. The sweep algorithm improves the brute-force algo-
rithm by sequentially sweeping the input node sets. The
quicker algorithm reduces disk I/Os by localizing search re-
gions.

Sweep Algorithm of Amoeba Join
By sorting the input node sets in advance and in the or-
der of their start values, it becomes more efficient to find
amoebas because the amoeba root of an amoeba (t1, . . . , tk)
always has the smallest start value in t1, . . . , tk. The sweep
algorithm (Algorithm 2) searches amoeba root nodes by
sweeping the sorted input node sets.

In Step 7 of Algorithm 2, a node ts with the the smallest
value in the input sets is assumed to be an amoeba root.
Because no other element in the input sets has a smaller

start value than ts, scanning the range of (ts.start, ts.end)
in Dj(1 ≤ j ≤ k, j 6= s) is sufficient to find all descendant
nodes of ts (Step 10). Then using these descendant nodes
and ts, we can enumerate all amoeba tuples rooted by ts

(Step 17). When the algorithm reaches Step 14, it is assured
that all amoebas whose root’s start value is smaller than or
equal to the current amoeba root candidate ts are found.

Algorithm 2 Sweep Amoeba Join Algorithm

Input: Sorted node sets D = (D1, . . . , Dk)
Output: R: a set of amoebas
1: R ⇐ nil.
2: while true do
3: if some of D1, . . . , Dk is empty then
4: return R // no more amoeba tuples
5: end if
6: create a node tuple t = (t1, . . . , tk) from

(D1.front, . . . Dk.front)
7: Let s be the smallest start node index in t, then ts is the

smallest node in D1, . . . , Dk

8: if isAmoeba(t) then
9: // s is the amoeba root node index in t
10: By searching the range of (ts.start, ts.end) in each Dj(1 ≤

j ≤ k, j 6= s), collect descendant nodes of ts, then construct
a set of these nodes Aj .

11: As = {ts} // contains only the current amoeba root
12: If every Aj(1 ≤ j ≤ k) is not empty, all permutations of

(A1, . . . , Ak) construct amoeba tuples, so insert them into
R.

13: end if
14: remove ts from Ds // all amoebas rooted by ts are found
15: end while

Heuristics for Search Space Reduction
Here, we introduce the quicker algorithm, a more elaborate
version of amoeba join, which is integrated with index look-
ups. While the sweep algorithm reads all nodes in the given
query domains from the database, the quicker algorithm
(Algorithm 3) tries to reduce this disk I/Os.

For a node tuple to be an amoeba, each node in the tu-
ple must be a descendant of the amoeba root node. When
a node v is considered a part of an amoeba, its amoeba
root is either v or one of its ancestor nodes. Figure 5 illus-
trates this idea of localizing database scans within the de-
scendant area of an amoeba root node candidate. Given a
pivot node, which is considered a component of an amoeba,
the quicker algorithm in Step 5 finds its ancestor nodes,
i.e., amoeba root candidates, then searches the descendant
area for other components of amoeba tuples. The quicker
algorithm chooses pivot nodes from the smallest domain,
namely Di, because the smaller the cardinality |Di|, the
fewer amoeba root candidates and their descendant nodes
(components of amoebas).

For this purpose, we use the frequency count (or its esti-
mation) of nodes belonging to each of the query domains.
Given domains of an amoeba join query (D1, . . . , Dk), let
E = (e1, . . . , ek) be frequency of D1, . . . , Dk. When the
value of |Di| is available, ei = |Di|, if not, ei = ∞. A func-
tion f sorts ei so that ef(1) ≤ · · · ≤ ef(k). Quicker algorithm
chooses pivot nodes from Df(1) (Step 4).

The quicker algorithm (Algorithm 3) utilizes three types
of index scan; for retrieving nodes in Df(1), which is the
smallest domain (Step 2); for retrieving ancestor nodes of
a pivot node (Step 5); and for scanning descendant nodes
of an amoeba root candidate (Step 11). A database index
that supports these three types of index scans is required to
perform the quicker algorithm.



pivot

search space

amoeba root amoeba
XML root 

(    ,    ,     )

pivot

search space

Figure 5: A small number of pivot nodes helps to
reduce index scan ranges.

This type of search space reduction (Figure 5) is not avail-
able in the lca method, because a lca node tends to be the
root of XML; it does not reduce the search space at all.
Another reason that makes this optimization possible is the
design concept of amoeba join, which tries to find common
ancestor nodes from specific domains, while the approach of
the lca or slca [11, 7] is to find common ancestors from the
entire nodes in an XML document.

Disk I/O Performance
When the height of an XML tree is h, the number of nodes
retrieved by one ancestor query is at most h. The quicker
algorithm retrieves ancestor nodes for each node in |Df(1)|,
and thus it requires h|Df(1)| node retrievals from the database.
Another factor that defines the disk I/O performance of the
quicker algorithm is how many node retrievals the heuristic
of Figure 5 saves. Let D′

i be a subdomain of Di, which is re-
trieved by the quicker algorithm; then, the number of nodes
scanned in the quicker algorithm is h|Df(1)| + |D′

1| + · · · +
|D′

k|. However, the sweep algorithm consumes all nodes in
the query domains; i.e., it searches |D1|+ · · ·+ |Dk| nodes.
When |Df(1)| is sufficiently small, as in the example shown
in Figure 5, |D′

i| is typically considerably smaller than |Di|.
In addition, the height of the XML, h, is generally limited;
only rarely is h larger than 100. Consequently, the quicker
algorithm is often less costly in terms of disk I/O than the
sweep algorithm.

This search space reduction is similar to pushing selection,
a query optimization technique for relational databases. XML
typically contains many repeat paths, and therefore, reduc-
ing the size of query domains by attaching conditions, such
as predicates on text values, to the path expression queries
is a common method. Hence, the quicker algorithm utilizes
a simple optimization to reduce disk I/Os.

5. EXPERIMENTAL RESULTS
We measured the performance of three amoeba join al-

gorithms, brute-force (BF), sweep(SW), and quicker algo-
rithm(QK). The first two algorithms can incorporate vari-
ous indexing techniques, so we compared them using sequen-
tial scans (S) of XML nodes, and more efficient index-based
scans (I). This let to five types of amoeba join algorithms:
BF/S (brute-force with sequential scan), BF/I (brute-force
with index scan), SW/S (sweep join processing with sequen-
tial scan), SW/I (sweep join processing with index scan),
and QK (quicker algorithm), which is a mixture of index
scanning and join processing.

Implementation
We implemented our amoeba join algorithms in C++ us-
ing B+-trees provided by the BerkeleyDB library [9]. We

Algorithm 3 Quicker Amoeba Join Algorithm
Input: Query domains D1, . . . , Dk and sorting function f
Output: A set of amoebas, R
1: Initialize priority queues (sorted by start order) Qi ⇐ empty (i =

1, . . . , k)
2: fill the Qf(1) with nodes in Df(1) by fetching from the database

(index scan)
3: for i = 1 . . . |Df(1)| do

4: pivot = Qf(1).top

5: query pivot’s ancestor nodes (index scan), then push them into
corresponding Qp(p 6= f(1)).

6: repeat
7: s = the smallest start node index in Q1.top, . . . , Qk.top.
8: ts = Qs.top // an amoeba root candidate
9: pop all entries q ahead of the ts, i.e. ∀q ∈ Qi, q.start <

ts.start
10: for j = f(1) . . . f(k) do
11: push unread descendant nodes of ts in Dj into Qj . (index

scan)
12: goto Step 18 if Qj is empty (ts cannot be an amoeba

root)
13: end for
14: // all of the Qp(p 6= f(1)) is not empty
15: By searching the range of (ts.start, ts.end) in each Qj(1 ≤

j ≤ k, j 6= s), collect descendant nodes of ts, then construct
a set of these nodes Aj .

16: As = {ts} // contains only the current amoeba root candidate
17: If every Aj(1 ≤ j ≤ k) is not empty, all permutations of

(A1, . . . , Ak) construct amoeba tuples, so insert them into
R.

18: pop Qs // all amoebas rooted by ts is computed
19: until s == f(1) // exit when the pivot node is popped
20: end for
21: return R

labeled each XML node with (start, end, level, path ID, parent

ID, text). The pair (start, end) is an interval representation
of XML nodes [6]. The start value can be used as a unique
node ID, so parent ID is the start value of a parent node. The
level is the depth of a node in the XML tree. The path ID

represents an ID assigned to each independent path. The
text is a text content encapsulated by tags or attributes.

XML nodes are stored in a B+-tree in ascending order of
their start values. The sequential scan method (S) reads the
stored nodes in this order. The parent node retrieval in the
quicker algorithm (QK) also utilizes this B+-tree index. As
for the index-base scan methods (SW/I and BF/I) and the
quicker algorithm (QK), to make node retrieval faster, we
generated a secondary B+-tree index using a compound key
(path ID, start), which aligns XML nodes first in the order of
path IDs, then that of start values. This secondary index is
useful for finding descendant nodes that belong to specific
paths. In addition, we constructed an inverted index for
text values (text ⇒ start) that looks up the start value (ID)
of a node from its text value.

Because the sequential scan method reads the entire list of
nodes to perform a query, it is somewhat analogous to node
stream processing, such as in handling SAX events. Another
reason to compare the index-based scan methods to the se-
quential scan methods is required to assure that the former,
using secondary indexes, is not too complex to invoke a lot
of random disk access. Too much random access may make
query-processing algorithms slower than a sequential scan of
all records.

The quicker algorithm (QK), used rough estimates of node
frequencies; if Di, a domain of an amoeba join query has a
text predicate, we assume |Di| = 1 or otherwise |Di| = ∞,
because the response size of a keyword search is usually less
than that of a path query. Although a more accurate es-



text

keyword

emph bold

QK SW/I SW/S BF/I BF/S QK SW/I SW/S BF/I BF/S QK SW/I SW/S BF/I BF/S

Q1 2.71 0.39 5.47  > 8d >  8d 22.91 1.97 30.81 > 3y >  3y 62.20 4.17 69.09 > 24y > 24 y

Q2 0.06 0.32 5.57 106.75 115.94 0.05 1.20 29.34 > 0.5h > 0.5h 0.06 2.67 67.12 > 11h > 11h

Q3 0.05 0.11 5.43 20.02 26.42 0.07 3.97 29.41 > 0.1h > 0.1h 0.06 8.95 66.02 > 0.5h > 0.5h

Q4 0.06 0.41 7.98 > 30y > 30y 0.05 10.96 43.41 > 162c > 162c 0.07 22.12 90.95 > 2631c > 2631c

Q1 : (emph, bold, keyword) Q2 : (emph, bold, keyword=>"aboard notes")

Q3 : (item, @id="item100", description) Q4 : (item, @id="item100", description, location, text)

 XMark (factor = 0.1, 12M)  XMark (factor = 0.5, 57M)  XMark (factor = 1.0, 114M)

h : hours (= 3600 sec), d : days (= 24h), y: years (= 365d), c: centuries (= 100y)

Figure 6: Structural fluctuation in XMark (left). Amoeba Join Performance (sec.) (right).

timation strategy could be accommodated, this is sufficient
for locating one of the small domains.

Data Sets
It is difficult to manipulate XML documents with struc-
tural fluctuations using current XML technology. As a re-
sult, XML document structure is currently rather simple
and monotonous in order to facilitate processing with SAX,
DOM or other APIs. Therefore, we could not present a real
world example of fully fluctuated XML data. Such an ex-
ample will be possible when XML databases are widespread.
Instead, we used a section of XMark benchmark [8], which
contains a lot of structural fluctuations under its text tags.
Figure 6 shows a part of its DataGuide [3], a summary of
path structure. The cycles in the DataGuide show that three
tags keyword, emph, and bold occur in arbitrary order within
the document.

We prepared three types of XMark document, varying
the scaling factors (f = 0.1, 0.5 and 1.0). Their structures
were too enormous and too complex to determine the path
structures for a specific context, showing that amoeba join
is also useful for querying such complicated XML data.

Amoeba Join Performance
Figure 6 shows the performance of the amoeba join queries
(Q1 to Q4). In the brute-force algorithms BF/I and BF/S,
some the computational complexity was too huge to com-
pute the result; thus, we show their estimation time, which
was calculated using the permutation size of a query and
the elapsed time for processing its first 500,000 nodes.

In Q1, the quicker algorithm was slower than the sweep
algorithm (SW/I) because the sizes of emph, bold, and key-

word were fairly large. As a consequence, excessive ances-
tor node retrievals in the quicker algorithm deteriorated its
performance. When a query contains predicates (Q2, Q3,
and Q4), the quicker algorithm performs an order of magni-
tude faster than the others because the size of the domain
constrained by a constant gets smaller. Therefore, a com-
bination of QK and SW/I algorithms provides the fastest
performance; when there is no low-frequency domain in a
query, it uses the SW/I, and otherwise it uses the QK.

The performance of SW/S scaled according to the database
size. Although the time requried to scan the entire database
was the same from Q1 to Q4, the processing of Q4 in SW/S
was the slowest; because the tuple size k of a query affects
the join performance. The same is true for SW/I. However,
the performance of the quicker algorithm was stable regard-
less of tuple size.

6. CONCLUSION & FUTURE WORK

Managing structural fluctuations in XML is a challenge
because the hierarchy of XML does not always have a signif-
icant meaning. Amoeba join is a method for querying XML
data with various structures without using explicit path ex-
pressions. Among the presented amoeba join algorithms,
the quicker algorithm performed well, and it is scalable to
the size of an XML document.

There are several interesting problems that we did not
address in this paper. One of them is optional or multiple
appearances of nodes within an amoeba. Nodes not included
in an amoeba require another amoeba join algorithm. Elim-
inating duplicate node appearances in an amoeba join result
is also an interesting problem to be addressed in the future.
This issue is somewhat similar to the operation of the ’dis-
tinct’ keyword in XQuery and SQL, although the semantics
of XML structure might be required to reflect the intention
of the user on in query results.

In addition, nested amoeba join should be supported. For
example,(manager, (org, department ⇒ ”R&D”)) first computes
an amoeba set AJ(org, department ⇒ ”R&D”), then for each
amoeba (vi, vj) ∈ AJ repeats a process of the amoeba join
(org, vi, vj). Due to limited space, we cannot mention in this
manuscript, its further details will be reported elsewhere.

7. REFERENCES
[1] S. Amer-Yahia, L. V. Lakshmanan, and S. Pandit.

FleXPath: Flexible structure and full-text querying for
XML. In proc. of SIGMOD, 2004.

[2] D. Chamberlin, D. Draper, M. Fernandez, M. Kay,
J. Robie, M. Rys, J. Simeon, J. Tivy, and P. Wadler.
XQuery from the Experts. Addison Wesley, 2004.

[3] R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In proc. of VLDB, 1997.

[4] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and
T. Yu. Approximate XML joins. In proc. of SIGMOD, 2002.

[5] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents. In
proc. of SIGMOD, 2003.

[6] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. In proc. of VLDB, 2001.

[7] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In
proc. of VLDB, 2004.

[8] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. manolesch, and R. Busse. XMark: A benchmark for XML
data management. In proc. of VLDB, 2002.

[9] Sleepycat Software. BerkeleyDB. available at
http://www.sleepycat.com/.

[10] M. Weis and F. Naumann. DogmatiX tracks down
duplicates in XML. In proc. of SIGMOD, 2005.

[11] Y. Xu and Y. Papaconstantinou. Efficient keyword search
for smallest LCAs in XML databases. In proc. of SIGMOD,
2005.


	page1: 38
	page2: 39
	page3: 40
	page4: 41
	page5: 42
	page6: 43


