
Global Document Frequency Estimation
in Peer-to-Peer Web Search

Matthias Bender ? , Sebastian Michel ? , Peter Triantafillou � , Gerhard Weikum ?

? Max-Planck-Institut für Informatik � RACTI and University of Patras

66123 Saarbrücken, Germany 26500 Rio, Greece

{mbender,smichel,weikum}@mpi-inf.mpg.de peter@ceid.upatras.gr
ABSTRACT
Information retrieval (IR) in peer-to-peer (P2P) networks,
where the corpus is spread across many loosely coupled
peers, has recently gained importance. In contrast to IR
systems on a centralized server or server farm, P2P IR faces
the additional challenge of either being oblivious to global
corpus statistics or having to compute the global measures
from local statistics at the individual peers in an efficient,
distributed manner. One specific measure of interest is the
global document frequency for different terms, which would
be very beneficial as term-specific weights in the scoring and
ranking of merged search results that have been obtained
from different peers.

This paper presents an efficient solution for the problem
of estimating global document frequencies in a large-scale
P2P network with very high dynamics where peers can join
and leave the network on short notice. In particular, the
developed method takes into account the fact that the lo-
cal document collections of autonomous peers may arbitrar-
ily overlap, so that global counting needs to be duplicate-
insensitive. The method is based on hash sketches as a
technique for compact data synopses. Experimental stud-
ies demonstrate the estimator’s accuracy, scalability, and
ability to cope with high dynamics. Moreover, the benefit
for ranking P2P search results is shown by experiments with
real-world Web data and queries.

1. INTRODUCTION
In recent years, distributed information retrieval systems

based on Peer-to-Peer (P2P) architectures are increasingly
receiving attention [27, 29, 22, 1, 21, 31, 4, 13, 39]. The P2P
approach offers the ability to handle huge amounts of data
in a highly distributed, self-organizing way and, thus, of-
fer enormous potential for search engines powerful in terms
of scalability, efficiency, and resilience to failures and dy-
namics. Additionally, such a search engine can potentially
benefit from the intellectual input (e.g., bookmarks, query
logs, etc.) of a large user community. Finally, but perhaps
even more importantly, a P2P web search engine can also
facilitate pluralism in informing users about internet con-
tent, which is crucial in order to preclude the formation of
information-resource monopolies and the biased visibility of

Copyright is held by the author/owner.
Ninth International Workshop on the Web and Databases (WebDB 2006),
June 30, 2006, Chicago, Illinois.

content from economically powerful sources.

1.1 Problem
Given the large-scale data distribution, one of the key

technical challenges is result merging, i.e., the process of ef-
fectively combining local query results from different sources.
While document scoring and ranking is a challenging prob-
lem already in centralized systems, additional difficulty in
a distributed environment stems from the fact that most
of the popular document scoring models, such as tf*idf or
[35], use collection-specific statistical information for this
purpose. Most prominently, both use document frequencies
(df), i.e. the number of documents in the collection that
contain a query term1. The local usage of collection-specific
df values in these scoring models result in document scores
that are incompatible across collections and, thus, make re-
sult merging difficult. On the other hand, if global df values
could be applied, the document scoring and ranking would
be ideal in the sense that it would be identical to the doc-
ument ranking that would be produced by a hypothetical
combined collection.

Early research on distributed information retrieval sys-
tems typically assumed disjointly partitioned collections. In
such a setting, the global df value is simply the sum over
all local df values. Instead, we envision autonomous peers
that independently gather thematically focused collections
through web crawls or similar techniques. In such a setting,
studies show a skewed distribution of documents across the
collections, with popular documents contained in a large
fraction of collections. Thus, summing up the df values
across collections would inevitably lead to biased df values
(and, thus, document scores) [24], as popular documents
are repeatedly accounted for. Additionally, thematically fo-
cused collections show a high variance of df values for the
same term (whereas randomly partitioned collections show a
rather uniform distribution of df values for the same term).
This further increases the necessity of a score normalization
across peers.

1.2 Contribution
We present a robust and scalable approach towards esti-

mating global df values using hash sketches [16]. We study
the general accuracy of hash sketches when used as synopses
to estimate document frequencies and we develop an effi-
cient strategy to combine these hash sketch synopses across
collections in a way that does not incur any additional er-
ror from combining them. We show the superiority of our
global df estimation technique compared to other techniques

1Note the difference to the notion of peer or collection fre-
quencies that estimate the number of collections that con-
tain a query term. The document frequency, instead, repre-
sents the total number of distinct documents that contain a
term.



and present experimental evidence of the effectiveness im-
provements in result merging stemming from this improved
knowledge. The experiments are conducted on real-word
web data using our fully operational P2P Web search en-
gine prototype.

The rest of the paper is organized as follows. Section 2
discusses related work and gives general background on P2P
IR. Section 3 introduces hash sketches as our technique for
multiset cardinality estimation and discusses their general
application in our distributed environment. Section 4 in-
troduces the design fundamentals that serve as a basis for
our approach and discusses the extensions necessary to sup-
port an overlap-aware global df estimation in the presence
of peers entering and leaving the system without prior no-
tice. Section 5 presents an experimental evaluation of the
general accuracy of hash sketches as cardinality estimators
and of the accuracy of our approach from different angles.
Finally, Section 6 concludes this work and points at future
research directions.

2. RELATED WORK

2.1 Estimating Set Cardinalities
Estimating overlap of sets has been receiving increasing

attention for modern emerging applications, such as data
streams, internet content delivery, etc. [6] describes a per-
mutation-based technique for efficiently estimating set sim-
ilarities for informed content delivery. [18] proposes a hash-
based synopsis data structure and algorithms to support
low-error and high-confident estimates for general set ex-
pressions. Bloom [5] describes a data structure for succinctly
representing a set in order to support membership queries;
[10] present an extension for dealing with multisets, but still
focuses on membership queries rather than cardinality esti-
mation. [22] proposes a gossip-based protocol for comput-
ing aggregate values in a fully decentralized fashion. [28]
addresses communication topology issues for distributed ag-
gregation and identifying frequent items in a network. [11]
develops a sketch-based framework for distributed estima-
tion of query result cardinalities, but does not consider du-
plicates. None of [22, 28, 11] addresses the elimination of
overlap.

Recently and independently, [12] proposed an approach
similar to ours which aims at duplicate-insensitive counting
in sensor networks. However, they have not published any
results regarding the resilience to churn of their method, nor
has it been applied to an IR scenario.

2.2 Peer-to-Peer Architectures
Recent research on P2P systems, such as Chord [38], CAN

[34], Pastry [36], or P-Grid [2] is typically based on vari-
ous forms of distributed hash tables (DHTs) and supports
mappings from keys, e.g., titles or authors, to locations in
a decentralized manner such that routing scales well with
n, the number of peers in the system. Typically, an exact-
match key lookup can be routed to the proper peer(s) in at
most O(log n) hops, and no peer needs to maintain more
than O(log n) routing information. These architectures can
also cope well with failures and the high dynamics of a P2P
system as peers join or leave the system at a high rate and
in an unpredictable manner.

2.3 Distributed IR and Web Search
Many approaches have been proposed for distributed IR,

most notably, CORI [9], the decision-theoretic framework
[32], the GlOSS method [19], and methods based on statis-
tical language models [37]. Recently, there has been research
towards overlap aware resource selection methods [20, 3, 30]
that consider the mutual overlap between peers during the

selection process but do not consider global df estimation.
Galanx [40] is a P2P search engine implemented using

the Apache HTTP server and BerkeleyDB. The Web site
servers are the peers of this architecture; pages are stored
only where they originate from, thus forming an overlap
free network. PlanetP [13] is a publish-subscribe service for
P2P communities, supporting content ranking search. The
global index is replicated using a gossiping algorithm. Odis-
sea [39] assumes a two-layered search engine architecture
with a global index structure distributed over the nodes in
the system. It actually advocates using a limited number of
nodes, in the spirit of a server farm. None of this prior work
consider the problem of estimating the global df value, for
peers with overlapping local contents.

2.4 Result Merging
For cooperative environments Kirsch’s algorithm [23] pro-

poses to collect local statistics from the selected databases
to normalize document scores. [26, 29] uses a centralized
database of collection samples, which is incompatible with
our architectural vision and seems infeasible in the presence
of high network dynamics. [7] gives an overview of algo-
rithms for distributed IR style result merging and database
content discovery. None of the presented techniques incor-
porates overlap detection between the peers into the merging
process.

Result merging techniques for topically organized collec-
tions were studied in [24]. Experiments showed that global
idf scores is the most desirable method, but they consid-
ered neither real-world Web pages nor overlap between col-
lections. [33] incorporates an estimated number of global
occurrences of the same document into the result merging
process, but does not estimate the global number of docu-
ments that contain a specific term.

3. MULTISET CARDINALITY ESTIMATION
USING HASH SKETCHES

Estimating the global document frequency for a given
term would be straightforward if peers had pair-wise dis-
joint local collections. The global collection is the union of
all local collections, and the disjointness would allows us to
simply sum up all local document frequencies for the same
term. We will discuss the resulting communication and sys-
tem aspects in Section 4. However, with non-disjoint lo-
cal collections, computing their union essentially produces
a multiset (bag) with duplicates. If we had the full doc-
ument ids of all items in the multiset, we could eliminate
duplicates by sorting or hashing and subsequently count the
distinct items. But this approach is expensive on large mul-
tisets with all documents explicitly represented. We would
rather prefer an approach where each local collection is rep-
resented by a compact synopsis, with a small and control-
lable approximation error.

This section introduces such a synopsis, namely, hash
sketches [16], and shows how to employ them for our goal.
When we form the union of several synopses, originating
from different peers, we face again the problem of how to
discount duplicates in the mulitset synopses. We will show
in this section how this duplicate-aware multiset-counting
problem is elegantly solved by our approach based on hash
sketches, and we demonstrate the low approximation error.

3.1 Hash Sketches
Hash sketches were first proposed by Flajolet and Martin

in [16] to probabilistically estimate the cardinality of a mul-
tiset S. [18] proposes a hash-based synopsis data structure
and algorithms to support low-error and high-confident es-
timates for general set expressions. Hash sketches rely on
the existence of a pseudo-uniform hash function h() : S →



[0, 1, . . . , 2L). Durand and Flajolet presented a similar al-
gorithm in [15] (super-LogLog counting) which reduced the
space complexity and relaxed the required statistical prop-
erties of the hash function.

Briefly, hash sketches work as follows. Let ρ(y) : [0, 2L) →
[0, L) be the position of the least significant (leftmost) 1-bit
in the binary representation of y; that is,

ρ(y) = min
k≥0

bit(y, k) 6= 0, y > 0

, and ρ(0) = L. bit(y, k) denotes the k-th bit in the binary
representation of y (bit-position 0 corresponds to the least
significant bit). In order to estimate the number n of dis-
tinct elements in a multiset S we apply ρ(h(d)) to all d ∈ S
and record the least-significant 1-bits in a bitmap vector
B[0 . . . L − 1]. Since h() distributes values uniformly over
[0, 2L), it follows that P (ρ(h(d)) = k) = 2−k−1.

Thus, when counting elements in an n-item multiset, B[0]
will be set to 1 approximately n

2
times, B[1] approximately

n
4

times, etc. Then, the quantity R(S) = maxd∈Sρ(d) pro-
vides an estimation of the value of log2 n. The authors in
[16, 15] present analyses and techniques to bound from above
the error introduced.Techniques which provably reduce the
statistical estimation error typically rely on employing mul-
tiple bitmaps for each hash sketch, instead of only one. The
overall estimation then is an averaging over the individual
estimations produced using each bitmap.

3.2 Combining Hash Sketches
Hash sketches offer duplicate elimination ”for free”, or in

other words, they allow counting distinct elements in mul-
tisets. Estimating the number of distinct elements (e.g.,
documents) of the union of an arbitrary number of multi-
sets (e.g., distributed and autonomous collections) - each
represented by a hash sketch synopsis - is easy by design: a
simple bit-wise OR-operation over all synopses yields a hash
sketch for the combined collection that instantly allows us to
estimate the number of distinct documents of the combined
collection.

More formally, we can derive the following distributivity
theorem:

Theorem 1. Let β(S) be the set of bit positions ρ(h(d))
for all d ∈ S. Then β(S1 ∪ S2) = β(S1) ∪ β(S2).

The proof follows directly from the definitions of ρ and
β. The corresponding bit in the resulting combined hash
sketch will be set if and only if at least one of the elements
in one of the original sets had set this bit. Particularly notice
that, if more than one set holds this element, the element
will conceptually be counted only once, effectively removing
duplicates.

3.3 Application to Global DF Estimation
The above methods can be employed for the purpose of

global df estimation as follows. Assume that each peer,
given its collection, prepares hash sketches, one for each set
of documents that contain a specific term (i.e., its index
list for that term). The network-wide combination of all
hash sketches for a specific term, thus, yields an estimate
for the number of distinct elements in the union of the sets
represented by their synopses, i.e., for the number of distinct
documents that contain the given term. This is the global
document frequency for that term.

4. OVERLAP-AWARE DF ESTIMATION

4.1 Design Fundamentals

We have implemented MINERVA2, a fully operational
P2P Web search engine building on the following design fun-
damentals [3, 30, 4]. We consider a P2P network in which
every peer is autonomous and has a local index that can
be built from the peer’s own crawls or imported from ex-
ternal sources and tailored to the user’s thematic interest
profile. The index contains inverted lists with URLs for
Web pages that contain terms. A conceptually global but
physically distributed directory, which is layered on top of
a distributed hash table (DHT), holds only very compact,
aggregated meta-information about the peers’ local indexes
and only to the extent that the individual peers are willing
to disclose. As part of the DHT, every peer is responsible
for the meta-information of a randomized subset of terms
within the global directory. For failure resilience and avail-
ability, the entry for a term may be replicated across mul-
tiple peers. The DHT offers a lookup method to determine
the peer responsible for a particular term.

Every peer publishes per-term summaries (Posts) of its
local index to the directory. The DHT hash function deter-
mines the directory peer currently responsible for this term.
This peer maintains a PeerList of all Posts for this term from
across the network. Posts contain contact information about
the peer who posted this summary together with statistics
to calculate IR-style measures for a term (e.g., the size of the
inverted list for the term, the maximum and average score
among the term’s inverted list entries, or some other statisti-
cal measure). These statistics are used to support the query
routing process, i.e., determining the most promising peers
for a particular query. To deal with the high dynamics in a
P2P network, each Post is assigned a Time-to-Live (TTL)
value. If the originator peer has not updated (refreshed) its
Post after this time interval, it is discarded.

The querying process for a multi-term query proceeds as
follows: the query initiator retrieves a list of potentially use-
ful peers by issuing a PeerList request for each query term
to the underlying overlay network. A number of promis-
ing peers for the complete query is computed from these
PeerLists. Subsequently, the query is forwarded to these
peers and executed based on their local indexes. Finally, the
results from the various peers are combined at the querying
peer into a single result list; this step is referred to as result
merging and would enormously benefit from the knowledge
of global df values.

Note that this design is DHT agnostic, since it utilizes
only a DHT’s lookup/routing function and thus enjoys wide
applicability.

4.2 Accommodating DF Metadata
Given the system design introduced above with a hash-

based assignment of terms to responsible directory peers, it
is very natural for these directory peers to maintain addi-
tional data that supports the global df estimation for the
terms they are responsible for. When publishing the term-
specific Posts about the local collection, we propose that
every peer includes a hash sketch representing its index list
for the respective term in its (term-specific) Post, so that
each directory peer can compute an estimate for the global
df values for the terms it is responsible for using the com-
bination method introduced in Section 3.2. Thus, the hash
sketch synopses representing the index lists of all peers for
a particular term are all sent to the same directory peer
responsible for this term. This peer can, by means of in-
expensive bit-wise operations, calculate an estimate for the
global df, for the terms it is responsible for, from these syn-
opses. Note the importance of utilizing compact synopses
for this goal, such as hash sketches, which introduce small
bandwidth and storage requirements.

2http://www.minerva-project.org



The query initiator collects the df estimates at query time
as piggybacked information when retrieving the PeerLists
from the directory peers during the query routing phase.
Remember that the df estimate for a particular term is
maintained at the same peer that maintains the respective
PeerList, so that the peers that hold the gdf estimated for
the query terms are the very same peers that are contacted
anyway in order to retrieve the respective PeerLists. The
query initiator can then attach the current gdf estimates to
the query message when sending the query to the selected
peers. These remote peers can use the estimates on-the-fly
as weights during their index scans to compute their local
query results.

Note that it is not a design choice to let the remote peers
simply return unnormalized (“objective”) scores (e.g., based
on tf values only) and then let the query initiator do the
re-calibration using gdf estimates. In that case, the local
query execution at the remote peers may already miss some
of the desired (i.e., globally best) results. For example, high-
scoring documents for the terms with low gdf (i.e., high idf)
may not be returned at all in that case.

Note that the performance of the local query execution it-
self is not affected at all by the necessary online score recal-
ibration: if index lists are created on (doc id, score)-tuples
(where now the score item does no longer include a locally bi-
ased df component, but some possibly normalized derivate
of the tf value), index lists can easily be sorted by these
scores and index list scanning can be performed as usual.
One extra computational operation is required for each list
item to compute the final (term-) score for this item (nor-
malization using the global df estimate). In this case, the
order of items in an index list does not change, as all scores
in a list are re-weighted by the same df value (monotonicity
applies). Thus, all index structures and performance accel-
eration techniques work without special adaptation.

4.3 Cost Analysis
Most of the network cost is caused during the posting

process, i.e., when a peer publishes its per-term metadata.
Conceptually, each Post consists of the term it represents,
an IP address and port number, plus collection-specific sta-
tistical information (e.g., collection size) and term-specific
statistical information (e.g., document frequency and max-
imum term frequency). In our prototype, such a Post on
average accounts for approximately 50 bytes. Our exper-
iments have shown that a hash sketch with a reasonably
small number of 8-byte bitmaps, e.g., 64 bitmaps, allows a
good estimation for our purposes. Such a hash sketch re-
quires 64 ∗ 8 = 512 bytes, i.e., it fits easily in the same TCP
packet that is needed anyway to send the metadata itself to
the responsible directory peer. Thus, the number of mes-
sages necessary to disseminate the Posts does not increase.

Where applicable, we use batching of Posts (for terms
that have the same directory peer) to further decrease the
number of messages. For all messages, we can additionally
apply gzip compression to additionally decrease the message
payload size. Obviously, the network cost caused by the
metadata publication additionally depends on the Time-to-
Live interval of the metadata, i.e., the time span after which
the metadata has to be refreshed. We report on actual traffic
measured in the course of our experimental evaluation in
Subsection 5.2.

After the dissemination of the Posts, peers executing a
query perform PeerList requests to retrieve a list of peers
that have published statistics about the specific query terms.
Note that the cost of this PeerLists retrieval does not change
significantly, as the hash sketches themselves are not trans-
ferred back to the PeerList requester. Instead, as the df
estimation is conducted at the directory peer, only one ad-
ditional value representing the current df estimate has to

be included in the answer to a PeerList request. The same
holds true for the actual query execution; when sending the
query to the selected peers, just one additional df value per
query term has to be transferred.

The storage cost at the directory peers storing the Posts
is also directly dependent on the number of Posts, the size
of a Post, and the size of a hash sketch. In a network with
n peers storing Posts of m distinct terms, each peer is re-
sponsible for an expected number of m/n PeerLists. For
example, in a system with 50, 000 terms and 10, 000 peers,
each peer is responsible for the maintenance of an average
of 5 PeerLists. This number decreases even further as more
and more peers join the system, because they typically do
not add a significant number of previously unseen terms. In
a worst case scenario (every peer has posted information for
all terms), a directory peer would thus be responsible for
50.000 Posts or 28.1 MB (including all hash sketches) for
each peer list, which we consider a reasonably small stor-
age effort. Remember from the previous subsection that,
alternatively, the directory peer does not have to store all
hash sketches sent together with the Posts, but can aggre-
gate them immediately using our sliding-window approach
- at the cost of increased network traffic.

The additional computational cost incurred by adding
hash sketches to the posting process is also negligible. For
nearly no additional cost, the peer that receives the hash
sketches for a particular term can combine these in an itera-
tive manner by simple bit-wise OR operations of bit vectors.

5. EXPERIMENTS
5.1 Cardinality Estimation using Hash Sketches

To study the accuracy and the robustness of hash sketches
as set cardinality estimators, we have performed a series of
100 runs, each for 256 8-byte bitvectors per sketch and dif-
ferent set sizes. The document sets are randomly created
for each run from a sufficiently large domain. We report
on the accuracy of the cardinality estimation using accu-
racy, i.e., the ratio estimated cardinality

true cardinality
. As shown in Figure

1, the estimation works very well. On average (over 100
runs each), the accuracy is close to 100%, the standard de-
viation is sufficiently small with quartile errors around 5%.
The plotted quartiles show the robustness of the approach
which, as expected [16, 15], becomes better as more bitmaps
are used per hash sketch. Notice also that the errors in both
figures tend to become smaller for larger sets; this indicates
that hash sketches will work very well in our intended en-
vironment (i.e., a large-scale system with a high number of
documents).

5.2 DF Estimation in the Presence of Churn
While the previous experiments assumed a static setup

of peers and their hash sketches, we now want to evaluate
the accuracy of our approach in the presence of network dy-
namics. For this purpose, we consider a model of arrivals
and departures as outlined in [25], where nodes arrive ac-
cording to a Poisson process with rate λ, while a node in
the system departs according to an exponential distribution
with rate parameter µ. Resulting in a system of about 1, 000
peers at a time, we assume time units of 10 min and choose
λ = 3 and µ = 0.002 and fix the interval at which peers
refresh their statistics at 6 time units (60 min). For simplic-
ity, we further set the Time-to-live for all statistics also to 6
time units. In a real world scenario, one could argue to in-
crease the TTL to cope with network latencies and network
failures, such that Posts in the directory survive one failed
refresh attempt. Each peer randomly picks 1,000 documents
from a domain of 2,000,000 documents. We use 256-bitmap
hash sketches for our evaluation.



 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  20000  40000  60000  80000  100000

A
c
c
u
ra

c
y

Number of Documents

256  Bitmaps

 
1. Quartile

Median
3. Quartile

Figure 1: Cardinality Estimation Accuracy (256-
bitmap Hash Sketches)

Figure 2 plots the document frequency estimates obtained
by our approach together with the true document frequency.
While intuitively, the approach should tend to overestimate
the number of documents in the system, because metadata
of peers that have recently left the system hang around for
some time before they time out, in practice our experiments
don’t clearly show this behavior. This is due to the fact
that the hash sketches themselves show a certain degree of
variance that overrules the (usually small) conceptual errors
of the approach. Nevertheless, the approach has been shown
to be robust against churn.

Regarding the network traffic caused by the experiment
under the above assumptions with only one term per peer,
we can report an average bandwidth consumption of only
less than 11 kilobytes per peer per hour (no gzip compres-
sion applied). Even for typical numbers of terms per peer
(50,000-100,000), this is within todays bandwidth capabili-
ties.

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 0  1000  2000  3000  4000  5000

N
u

m
b

e
r 

o
f 

D
o

c
u

m
e

n
ts

Time

Quality of df Estimation in the Presence of Churn

real
estimated

Figure 2: df Estimation Accuracy (256-bitmap Hash
Sketches)

5.3 Improving Result Merging
For this experiment we use real-world Web data from

10 topically focused collections harvested by a focused web
crawler. In order to create a benchmark, we have split
each topical collection into 4 fragments. We create 40 peers
such that each peer hosts 3 out of 4 fragments from the
same topic, thus creating high overlap among same-topic
peers. As query load, we 30 popular Google queries taken

from Zeitgeist3. We use CORI [7] as a common query rout-
ing strategy and compare 4 different result merging strate-
gies.The document scores are based on collection-specific
(i.e., “local”) df values or our global df values and are nor-
malized using their respective weighted CORI peer score
(from the query routing phase) or not. For this normaliza-
tion, more specifically, we use the norm-dbs method used by
the INQUERY framework [8], that re-computes document
scores as score = (D + 0.4 × Cnorm × D)/1.4. As a rank
distance, we use Spearman’s footrule distance [14]., defined
as F (σ1, σ2) =

P
i |σref (i) − σpeers(i)| where σref (i) is the

rank of document i in the reference ranking and σpeers(i) is
the position of document i in the peers’ document ranking.
If a document from σpeers is not in σref we assign a fictitious
rank (k + 1). We normalize all distances by 1− distance

maxdistance
to obtain a normalized quality measure.

Figure 3 shows the results for the 40-peers benchmark.
With local query execution based on global df values, the
ranking quality is remarkably above the quality obtained by
the CORI-based merging methods. In particular, three out
of the four methods do not even come close to the optimal
document ranking at all, even if all 40 peers are involved in
the query. This is due to the fact that the document scores
based on local df values are incomparable across the peers
and, thus, documents that are not in the reference top-20
document ranking are pushed in by skewed local df scores
at the peers.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

Q
u
a
lt
y
 o

f 
R

a
n
k
in

g

Number of Queried Peers

40 Thematically Focused Peers + Google Zeitgeist Queries

Document score merger (global)
Document score merger (local)

CORI merger (global)
CORI merger (local)

Figure 3: Quality of Query Results (40 Peers)

6. CONCLUSION AND OUTLOOK
This paper has developed and evaluated a novel and ef-

ficient algorithm to estimate global document frequencies
in large-scale dynamic P2P networks. Our algorithm uti-
lizes compact synopses based on hash sketches, which can
be combined from an arbitrary number of autonomous dis-
tributed sources without incurring additional error. To our
knowledge, this is the first approach to this problem that can
cope with arbitrarily overlapping collections without addi-
tional effort. We study the network and storage require-
ments and present a detailed study of the accuracy of hash
sketches for our specific purpose for static and dynamic net-
works.

We point out that the main focus of this paper is not to
quantify the effect that the knowledge of global df values can
have on result merging. The corresponding experiment is
only preliminary, but nevertheless indicates the potential for
improvements. While this effect has already been observed

3www.google.com/press/zeitgeist.html



in the literature [24], more comprehensive experiments on
result merging in P2P networks are subject of future work.

Our approach can be generalized to all forms of distributed
systems that can benefit from global counting with dupli-
cate elimination, e.g., cardinality estimations in distributed
database systems.

7. REFERENCES
[1] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and

T. V. Pelt. Gridvine: Building internet-scale semantic
overlay networks. In ISWC 2004.

[2] K. Aberer, M. Punceva, M. Hauswirth, and
R. Schmidt. Improving data access in p2p systems.
IEEE Internet Computing, 6(1):58–67, 2002.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum,
and C. Zimmer. Improving collection selection with
overlap awareness in p2p search engines. In SIGIR05,
Salvador, Brasil, 2005. ACM.

[4] M. Bender, S. Michel, P. Triantafillou, G. Weikum,
and C. Zimmer. Minerva: Collaborative p2p search. In
VLDB, 2005.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7), 1970.

[6] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost.
Informed content delivery across adaptive overlay
networks. SIGCOMM, 2002.

[7] J. Callan. Distributed information retrieval. Advances
in information retrieval, Kluwer Academic Publishers.,
2000.

[8] J. P. Callan, W. B. Croft, and J. Broglio. Trec and
tipster experiments with inquery. Inf. Process.
Manage., 31(3), 1995.

[9] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
SIGIR, 1995.

[10] S. Cohen and Y. Matias. Spectral bloom filters. In
SIGMOD 2003.

[11] G. Cormode and M. N. Garofalakis. Sketching streams
through the net: Distributed approximate query
tracking. In VLDB, 2005.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang.
What’s different: Distributed, continuous monitoring
of duplicate-resilient aggregates on data streams. In
ICDE, 2006.

[13] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and
T. D. Nguyen. Planetp: Using gossiping to build
content addressable peer-to-peer information sharing
communities. In HPDC, 2003.

[14] P. Diaconis and R. Graham. Spearman’s footrule as a
measure of disarray. Journal of the Royal Statistical
Society, 1977.

[15] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In G. Di Battista and U. Zwick, editors,
ESA03, volume 2832 of LNCS, Sept. 2003.

[16] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31(2), 1985.

[17] N. Fuhr. A decision-theoretic approach to database
selection in networked IR. ACM Transactions on
Information Systems, 17(3), 1999.

[18] S. Ganguly, M. Garofalakis, and R. Rastogi.
Processing set expressions over continuous update
streams. In SIGMOD, 2003.

[19] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss:
text-source discovery over the internet. ACM Trans.
Database Syst., 24(2), 1999.

[20] T. Hernandez and S. Kambhampati. Improving text
collection selection with coverage and overlap

statistics. pc-recommended poster. WWW 2005. Full
version available at
http://rakaposhi.eas.asu.edu/thomas-www05-long.pdf.

[21] S. Idreos, M. Koubarakis, and C. Tryfonopoulos.
P2p-diet: An extensible p2p service that unifies
ad-hoc and continuous querying in super-peer
networks. In SIGMOD, 2004.

[22] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Trans. Comput. Syst., 23(1):219–252, 2005.

[23] S. Kirsch. Document retrieval over networks wherein
ranking and relevance scores are computed at the
client for multiple database documents. US patent
5,659,732, 1997.

[24] L. S. Larkey, M. E. Connell, and J. P. Callan.
Collection selection and results merging with topically
organized u.s. patents and TREC data. In CIKM
2000.

[25] D. Liben-Nowell, H. Balakrishnan, and D. Karger.
Analysis of the evolution of peer-topeer systems, 2002.

[26] J. Lu and J. Callan. Merging retrieval results in
hierarchical peer-to-peer networks. In SIGIR, 2004.

[27] J. Lu and J. P. Callan. Content-based retrieval in
hybrid peer-to-peer networks. In CIKM, pages
199–206, 2003.

[28] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries
and deltas: Efficient and robust aggregation in sensor
network streams. In SIGMOD 2005.

[29] W. Meng, C. Yu, and K.-L. Liu. Building efficient and
effective metasearch engines. ACM Comput. Surv.,
34(1):48–89, 2002.

[30] S. Michel, M. Bender, P. Triantafillou, and
G. Weikum. Iqn routing: Integrating quality and
novelty in p2p querying and ranking. In EDBT, pages
149–166, 2006.

[31] H. Nottelmann, G. Fischer, A. Titarenko, and
A. Nurzenski. An integrated approach for searching
and browsing in heterogeneous peer-to-peer networks.
In HDIR 2005.

[32] H. Nottelmann and N. Fuhr. Evaluating different
methods of estimating retrieval quality for resource
selection. In SIGIR, 2003.

[33] O. Papapetrou, S. Michel, M. Bender, and G. Weikum.
On the usage of global document occurrences in
peer-to-peer information systems. In COOPIS 2005.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In SIGCOMM 2001.

[35] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. In SIGIR, 1994.

[36] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware 2001.

[37] L. Si, R. Jin, J. Callan, and P. Ogilvie. A language
modeling framework for resource selection and results
merging. In CIKM 2002.

[38] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
2001.

[39] T. Suel, C. Mathur, J. wen Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram.
Odissea: A peer-to-peer architecture for scalable web
search and information retrieval. In WebDB, 2003.

[40] Y. Wang, L. Galanis, and D. J. de Witt. Galanx: An
efficient peer-to-peer search engine system. Available
at http://www.cs.wisc.edu/ yuanwang.


	page1: 62
	page2: 63
	page3: 64
	page4: 65
	page5: 66
	page6: 67


