
Improving SSD Lifetime with Byte-Addressable Metadata
Yanqin Jin!

University of California, San Diego
y7jin@cs.ucsd.edu

Hung-Wei Tseng
North Carolina State University

hungwei_tseng@ncsu.edu

Yannis Papakonstantinou
University of California, San Diego

yannis@cs.ucsd.edu

Steven Swanson
University of California, San Diego

swanson@cs.ucsd.edu

ABSTRACT
Existing solid state drives (SSDs) provide !ash-based out-of-band
(OOB) data that can only be updated on a page write. Consequently,
the metadata stored in their OOB region lack !exibility due to the
idiosyncrasies of !ash memory, incurring unnecessary !ash write
operations detrimental to device lifetime.

We propose PebbleSSD, an SSD withbyte-addressable meta-
data, or BAM, as a mechanism exploiting the non-volatile, byte-
addressable random access memory (NVRAM) inside the SSD. With
BAM, PebbleSSD can support a range of useful features to improve
its lifetime by reducing redundant !ash writes. Speci"cally, Pebb-
leSSD supports a write-optimized, BAM-based "le block mapping
to prevent excessive updates of "le system index blocks. Further-
more, PebbleSSD allows log-structured "le systems to perform fast
and e#cient log cleaning with minimal !ash writes.

We have implemented a prototype of PebbleSSD on a commer-
cial SSD development platform, and experimental results demon-
strate that PebbleSSD can reduce the amount of data written by
log-structured "le systems during log cleaning by up to99%, and
PebbleSSDÕs BAM-based "le block mapping can reduce !ash writes
by up to33%for a number of workloads.
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1 INTRODUCTION
Due to the idiosyncrasies of !ash, solid state drives (SSDs) imple-
ment complex !ash translation layers (FTLs) to hide the details of
!ash, including its limited lifetime. To support this, NAND !ash
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devices provide out-of-band (OOB) regions on each !ash page that
allows FTLs to store metadata. Storing the metadata in !ash limits
its utility since the OOB region su$ers from the same idiosyncrasies
as the primary Òin-bandÓ data.

Emerging non-volatile byte-addressable memories avoid the id-
iosyncrasies of !ash memory and will eventually enable very fast
SSDs. However, in the near future, the cost-per-bit of these non-
volatile memories still cannot compete with !ash. A more economi-
cal alternative is to use non-volatile, byte-addressable memories to
store FTL metadata (i.e. the OOB data). Such a change would come
at a modest price but could dramatically increase the !exibility of
FTLs and enable a wide range of useful features.

Based on these observations, we have proposedPebbleSSD that
allows us to explore the implications and applications ofbyte-
addressable metadata (BAM). PebbleSSD provides two additional
features to modern SSDs. These features improve the e#ciency of
log-structured "le systems.

The "rst new feature of PebbleSSD is the use of BAM to store
the logical address to which each physical page has been mapped
by the FTL. This BAM-based mapping is the inverse of the normal
logical-to-physical address mapping that most FTLs already store
in the in-SSD DRAM. Some existing SSDs also store this physical-
to-logical mapping in the !ash-based per-page OOB region. The
second new feature of PebbleSSD is using BAM to temporarily store
"le system metadata.

To support these features, PebbleSSD provides two new com-
mands. The "rst command isremapthat allows the FTL to dy-
namically change the bi-directional mapping between logical and
physical addresses, achieving !exible and fast movement of data in
the logical address space without having to write to !ash.

remapmakes log cleaning more e#cient. Original log-structured
"le systems have to read valid data from their previous locations
and write them to new destinations. In contrast, our custom log-
structured "le systems running on PebbleSSD can ÒmoveÓ data
without writing to !ash, thus e$ectively reducing the amount of
data written during log cleaning.

The second command isfs_write that persists not only "le data
blocks1 in !ash memory, but also their o$set in the "le and "le
inode number in BAM.

fs_write allows for more e#cient !ushing of "le data blocks.
This allows log-structured "le systems to avoid the so-called Òwan-
dering tree problemÓ in which the "le systems write data and index
blocks to newly allocated space, thus writing a data block can cause

1 Throughout this paper, we refer to the granularity of !ash erase operation as Ò!ash
erase blockÓ, Ò!ash blockÓ or Òerase blockÓ, while ÒblockÓ, Òdata blockÓ, Ònode blockÓ,
Ò"le blockÓ etc. refer to the basic data unit in "le systems.
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Figure 1: System architecture They system consists of the fol-
lowing components: PebbleSSD, log-structured "le system, and
block layer and device driver.

recursive !ushing of its ancestor index blocks in the tree-based
block mapping [15]. With fs_write , log-structured "le systems
write only "le data blocks duringfsync . The "le systems do not
have to write the index blocks duringfsync since the information
in BAM written by fs_write is already su#cient to guarantee the
recoverability of "le. Therefore BAM allows log-structured "le sys-
tem to write less data to !ash, thus improving the e#ciency and
lifetime of PebbleSSD.

We implement PebbleSSD on a commercial, !ash-based SSD ref-
erence design. We modify NILFS2 [10] and F2FS [24] to demonstrate
the bene"ts of PebbleSSD. The experimental results show that Peb-
bleSSD can reduce the amount of data written by log-structured "le
systems during log cleaning by up to99%with the remapcommand.
PebbleSSDÕs write-optimized "le block mapping andfs_write re-
duce the !ash write by up to33%for a wide range of workloads.

The rest of the paper is organized as follows. Section 2 provides
background of PebbleSSD. Section 3 presents an overview of the
system. Section 4 and Section 5 describes the components of the
system in detail. Section 6 presents our experimental results. Sec-
tion 7 places this work in the context of existing research, while
Section 8 concludes.

2 BACKGROUND AND MOTIVATION
PebbleSSD combines conventional !ash memory, which is inexpen-
sive, prone to wear-out, and idiosyncratic, with byte-addressable
NVM that has lower latency, a cleaner interface, and better reliabil-
ity. Combining these two types of memories allows PebbleSSD to
signi"cantly improve the reliability and e#ciency of log-structured
"le systems at moderate cost.

Below, we brie!y survey the characteristics of NAND !ash, byte
addressable NVM, and log-structured "le systems.

2.1 Flash memory and SSD
The characteristics of !ash memory has profound in!uence on SSD
design and implementation. First, !ash memory supports three

basic operations, i.e. read, program and erase that operate on dif-
ferent granularities with di$erent latencies. Speci"cally, read and
program operate on 4Ð8 KB pages and have latencies of less than
100µs and several hundred microseconds respectively depending
on underlying !ash devices. In contrast, erase operate on an entire
!ash block which typically consists of between 64 and 512 pages
and takes several milliseconds to complete.

Since pages are immutable once programmed until the next erase
operation, and naive erase-before-program approach to in-place
update is costly and harmful to SSD lifetime, SSDs utilize the !ash
translation layer (FTL) to emulate the block interface. The FTL maps
logical block addresses (LBAs) to physical page numbers (PPNs),
and directs incoming write requests evenly to erased pages. When
all the pages in a !ash block are programmed, the "rmware inserts
the block to a list for future erase operations.

Second, each !ash block can endure only a limited number of
program/erase (P/E) cycles before it becomes unreliable. Therefore,
one of the most critical design goals of SSDs is to maximize their
lifetime by making !ash memory blocks wear slowly and evenly.

Flash pages include an OOB region in addition to the Òin-bandÓ
4 or 8 KB region. The FTL stores per-page metadata in the OOB
region. This can include the LBA to which the physical page has
been mapped. In this way, the FTL maintains an inverse mapping
from physical to logical address space. Each time the host issues a
write request to an LBA, the FTL writes data to an erased page and
stores the LBA in the pageÕs OOB region. To modify the OOB, the
FTL has to write the content of a physical page to another location.

SSDs have to perform garbage collection to prepare erased !ash
blocks for incoming write requests. During garbage collection, the
"rmware sequentially scans the pages in a !ash block and identi"es
which pages contain valid data. After copying valid pages to their
new locations, the "rmware can safely erase the entire !ash block.

2.2 Log-structured �le system
A log-structured "le system [10, 24, 33] organizes its data in one
or multiple append-only logs, a natural "t for !ash-based devices.
Due to the large-scale deployment of SSDs, recent !ash-friendly
"le systems [24] have attracted close attention, yet they su$er from
two limitations.

First, log-structured "le systems have to perform host log clean-
ing to create freesegments in the logical address space for incoming
write requests from user space applications. Log cleaning is similar
to, but independent from the SSDÕs internal garbage collection2.
Current SSDs con"ne the log-structured "le system to block-based
I/O interface. The semantic gap and lack of coordination between
SSD garbage collection and "le system log cleaning can lead to
ine#ciencies. Due to their independent data movement, valid data
may be written multiple times by each of them, consuming erased
!ash pages rapidly.

Second, log-structured "le systems su$er from the Òwandering
tree problemÓ [15]. This occurs because log-structured "le systems
must perform out-of-place updates. A write to one data block in
a "le can cause a cascade of writes as the "le systems update the

2In some context, log cleaning is also called Ògarbage collectionÓ of log-structured
"le systems. In this paper, for the purpose of simplicity and clari"cation, we use Òlog
cleaningÓ in the context of log-structured "le system, and Ògarbage collectionÓ in the
context of SSDs.
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pointer to that data block, the pointer to the direct node block that
contains the pointer, the pointer to the indirect block that points to
the direct node block, so on.

3 SYSTEM OVERVIEW
PebbleSSD has a heterogeneous architecture using !ash memory
as primary data storage and NVRAM to store BAM in addition to
metadata in the !ashÕs OOB.

Figure 1 illustrates the relationship between PebbleSSD and other
components of the system. This section describes system compo-
nents while Section 4 and Section 5 present their implementation
in more detail.

3.1 PebbleSSD interface
PebbleSSD uses the BAM to enable a new interface that allows ap-
plications to manage their data more e#ciently. Table 1 summarizes
the commands included in this interface.

First, PebbleSSD stores the physical-to-logical address mapping
in BAM. This is di$erent from conventional designs that store
such mapping in !ash-based OOB region. Theremapcommand can
dynamically change both the normal LBA-to-PPN mapping and the
BAM-based PPN-to-LBA mapping.

Second, thefs_write command not only writes data to !ash
memory, but also updates their corresponding metadata in BAM.
This can be useful to "le systems because they can avoid having to
issue multiplewrite commands to !ash memory. For example, "le
systems can issue a singlefs_write command to write "le data
blocks as well as update the pointers pointing to them.

Third, PebbleSSD supports conventionalwrite , read andtrim
commands to maintain compatibility.

3.2 PebbleSSD applications
System can use PebbleSSDÕs new commands in a variety of ways.
We focus on two optimizations especially suited to log-structured
"le systems: usingremapto reduce the cost of log cleaning and
usingfs_write to improve the e#ciency of writing data blocks.

Log-structured "le systems have to move clean, valid data from
their original logical segments to newly allocated ones during log
cleaning. To reduce data movement overhead, log-structured "le
systems prefer to select old segments for cleaning. Therefore, there
is a high chance that the pages in this segment are already clean
and persistent in !ash memory.

Log structured "le systems can use PebbleSSDÕsremapcommand
to reduce the cost of moving clean data to new log segments. Rather
than copying the data usingread andwrite commands, the "le
system canremapthe clean data into the new segment. Figure 2
shows this operation in action.

Log structured "le system can usefs_write to avoid the wan-
dering tree problem described in Section 2.2. The "le system can
usefs_write to store "le inode numbers and data blocksÕ o$sets
within their "les in the BAM, allowing the "le system to defer
the !ushing of node blocks in the conventional tree-based block
mapping index until next checkpoint.
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Figure 2: Log cleaningTheremapcommand allows log-structured
"le systems to remap physical pages to new LBAs without writing
!ash memory.

4 PEBBLESSD
We have built PebbleSSD on a commercial SSD development board.
Our implementation includes a customized "rmware, a custom dri-
ver and modi"ed Linux block layer to support BAM. The PebbleSSD
"rmware manages the !ash memory and BAM area. The modi"ed
PebbleSSD block driver supports an extended interface that includes
remapandfs_write . The block layer invokes the device driver to
issue low-level commands to PebbleSSD. In this section we describe
in detail the core features of PebbleSSD focusing onremapand
fs_write commands.

4.1 Hardware architecture
Our commercial NVMe [11] SSD development platform connects to
the host machine via four-lane PCIe 3.0. It comprises an array of SLC
!ash chips (375 GB in total) organized in 16 channels. The channels
are connected to a multi-core controller. PebbleSSD "rmware runs
on the controller to manage !ash memory and provide support for
its commands.
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Command Description

read(startLBA, num) Read num sectors from startLBA
write (startLBA, num) Write num sectors from startLBA
trim (startLBA, num) Mark num sectors starting from startLBA as invalid
fs_write (startLBA, num, "le, o$stInFile) Write num sectors starting from startLBA for a "le.
remap(srcLBA, dstLBA, num) Move num sectors starting from srcLBA to dstLBA.

Table 1: PebbleSSD commands The newfs_write andremapcommands allow applications e.g. "le systems to reduce the amount of data
written to !ash.

Figure 3 shows the hardware architecture of PebbleSSD. The
most important components are the embedded cores, the !ash
interface and the in-SSD DRAM.
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Figure 3: PebbleSSD architecture PebbleSSD exposes its internal
DRAM and processing power to the host via PCIe/NVMe interface.

The SSD controller comprises multiple embedded processors
running "rmware at 500MHz. Each of these cores has 64 KB pri-
vate instruction and data memories. An on-chip network connects
the cores, the !ash interface and the DRAM so that they can com-
municate with each other. The embedded cores issue commands to
the !ash interface which reads or writes data from/to a bu$er in the
PebbleSSDÕs internal DRAM. The cores have to initiate explicit data
movements between the DRAM and their private data memories to
operate on the data stored in the DRAM.

The in-device DRAM (2 GB in total) holds PebbleSSDÕs BAM as
well as other FTLÕs metadata. The DRAM also stores statistics and
state information for each !ash erase block so that the "rmware
can perform garbage collection and wear leveling e#ciently.

In this paper, we assume that the DRAM is persistent. In prac-
tice, it would either be battery or capacitor-backed. New memory
technologies e.g. Intel 3D-XPoint memory [1] could also replace
the original DRAM.

4.2 BAM
The BAM is the core architectural component of PebbleSSD, and
the "rmware manages mapping information in the BAM to support

remapand fs_write . Below we describe the implementation of
remapandfs_write in more detail.

4.2.1 Physical-to-logical mapping andremap. PebbleSSD uses
the BAM to track the bidirectional mapping between logical and
physical address spaces, and theremapcommand exposes the map-
ping to software. The PPN-to-LBA table is an inverse of the normal
LBA-to-PPN table that conventional FTLs use to emulate a block
I/O interface.

PebbleSSD stores the PPN-to-LBA mapping table in the BAM.
PebbleSSD uses a 64-bit integer to represent this information. The
total size of the PPN-to-LBA table is no larger than that of the LBA-
to-PPN table since the capacity of physical !ash memory available
in an SSD is usually smaller than the 64-bit logical address space.

The current PebbleSSD "rmware implements this PPN-to-LBA
mapping as an array. To keep the bidirectional mapping between
logical and physical address space consistent and up-to-date, the
write andremapcommands always update the LBA-to-PPN and
PPN-to-LBA tables together.

Theremapcommand operates on both LBA-to-PPN and PPN-to-
LBA mapping table. Theremapcommand takes three parameters,
srcLBA, dstLBAandnum. The "rmware copies the content of the
numconsecutive mapping table entries starting fromsrcLBAto the
entries starting fromdstLBA. Therefore, the actual data stored on
those physical pages can be accessed from a new logical address
dstLBAby future read operations. In this way,remapachieves
the movement of data fromsrcLBAto dstLBAat low cost without
incurring any !ash write.

4.2.2 E!icient file block mapping andfs_write . PebbleSSD can
also store the mapping from data blocks to corresponding "le-
system-speci"c information in BAM. Figure 4 illustrates the map-
ping tables used for this purpose. Each entry in the table has two
components. The "rst component stores the data blockÕs o$set
within the "le, and the second component is a pointer that forms a
linked list with other data blocks in the "le.

The space required for each entry depends on "le system data
block size, the maximum size of an "le and the capacity of the BAM.
For example, if the "le systemÕs data block size is 4 KB, a "le can
reach 16 TB at most, and the BAM has a total capacity of 4 GB, then
the "rmware can use two 32-bit integers to store each entry.

For each opened "le that supportswrite operation, PebbleSSD
"rmware maintains a linked list of the aforementioned mapping
table entries. By traversing the per-"le linked list, the "rmware
retrieves the metadata of all the data blocks that belong to the "le
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Figure 4: PebbleSSD write-optimized �le blockmapping Peb-
bleSSD stores in the BAM an auxiliary "le block mapping for "les.
This "le block mapping comprises an inode table and a "le o$set
table whose entries form per-"le linked lists. The linked lists keep
track of data blocks that have been written for each "le since the
latest checkpoint.

and that have been written back by the "le system since the most
recent "le system checkpoint.

The linked lists are append-only. PebbleSSD is able to traverse the
linked list and retrieve entries, but can only add new entries to its
tail. Thefs_write command causes the "rmware to add mapping
table entries to the linked list in addition to !ushing a number
of data blocks to !ash memory. Once the "rmware "nishes the
insertion into the linked list, the data blocks logically become part
of the "le so that the "rmware can later locate them by traversing
the linked list in BAM. Thus the "le system no longer has to !ush
the index blocks of the "le to !ash memory frequently, e$ectively
breaking the recursive updates in the wandering tree problem.

A separate hash table residing in BAM maps a "leÕs inode number
to the head of its linked list. PebbleSSD uses this hash table to locate
the linked list that belongs to a particular "le.

4.3 Block layer and device driver
The PebbleSSD requires a custom Linux block layer and device
driver so that software can use thefs_write andremapcommands.
The block layer accepts extendedbio requests from the "le system
and passes thebio structure to the SSD driver. In the extendedbio
struct, the "eldbi_rw encodes the type of the operation, and two
new "elds contain additional arguments to supply to the device
driver, e.g.offsetInfile , inodeNumor srcLBA. Then the device
driver translates thebio to appropriate NVMe commands and issues
them to PebbleSSD.

5 FILE SYSTEMS CUSTOMIZATION
Log-structured "le systems provide two opportunities to apply
PebbleSSDÕs new capabilities. Leveraging the new commands allows
these "le systems to reduce the amount of data written to !ash
improving the SSDÕs lifetime.

The remapcommand of PebbleSSD allows log-structured "le
systems to perform fast and e#cient log cleaning and reduce the

amount of data written to the SSD. Thefs_write command avoids
the recursive updates on other interior node blocks in the tree-based
block mapping index.

5.1 Log cleaning
Log-structured "le systems perform log cleaning to create free,
contiguous segments in the logical address space to service future
write requests. During the cleaning process, log-structured "le
systems scan the logs, copy valid data to new locations, discard
invalid data and reclaim the space originally occupied.

The remapcommand supports e#cient movement of data in-
side the SSD without incurring !ash writes and host-device data
transfers. Log structured "le systems can useremapto avoid copy-
ing data to a new segment as long as the data in the segment is
clean (i.e., there does not exist a more recent update waiting in the
operating system page cache).

Determining whether a block is clean is not always simple. The
obvious approach is to use the Linux page descriptorÕs dirty bit,
but this not always su#cient. For instance, F2FS [24] employs a
Òlazy migrationÓ policy that marks valid data blocks in the page
cache as dirty so the writeback thread will write them back later.
To leverageremapin our version of F2FS, we used a new status bit
to indicate whether this block is truly dirty or just marked dirty by
the log cleaning thread.

The "le system also has to track the old LBAs of all blocks before
issuing theremapcommand. The original NILFS2 [10] fails to do so.
After reading a "le block into page cache, NILFS2 overwrites the
original LBA. Consequently when the log cleaning thread later mi-
grates this "le block, it has no information about its source location.
To address this issue, for each clean and up-to-date "le block that
the log cleaning thread plans to migrate, thebuffer_head struct
has an extra64-bit "eld to store the old LBA.

5.2 Data block writing
Log-structured "le systems can use PebbleSSDÕs new interface to
improve the e#ciency of writing "le data blocks. The "le system
can issue onefs_write command to persist data blocks in !ash
memory and their metadata in the BAM area. The metadata include
the blocksÕ o$set within their "le and the "le inode number. This
allows the "le system to avoid the recursive updates of index blocks
containing pointers pointing to the data blocks.

When writing back data blocks to a "le withfs_write , the
log-structured "le systems send the following information to Peb-
bleSSD via the block layer and device driver:startLBA , length ,
inodeNumandoffsetInFile . Thefs_write stores data blocks in
!ash memory and their associated metadata in the BAM area. Since
PebbleSSD already allocates su#cient space for both inode table
and "le o$set table,fs_write does not dynamically increase the
space consumption of BAM.

The "le system periodically !ushes the original tree-based block
mapping index to !ash memory during checkpoint to limit the
number of dirty blocks in the index. This helps reduce "le system
metadata loss and recovery overhead in the event of failures.

The "le system maintains the conventional block mapping in
page cache and continue to use it for normal "le system opera-
tions unless there is a failure. The "le system performs periodic
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(a) (b)

Figure 5: Performance comparison of fs_write and write (a) shows thatfs_write achieves the same throughput as that ofwrite
since the overhead of linked list operations is minimal. (b) shows thatfs_write andwrite have similar latency.

(a) (b)

Figure 6: Performance of MOVEwith conventional SSD and PebbleSSD (a) shows that theremap-based implementation ofMOVEachieves
3.7⇥ improvement in throughput and (b) shows that it achieves87%reduction in latency, compared with conventional implementation
usingread andwrite .

checkpointing and write back the node blocks of the conventional
block mapping index. After the checkpointing task "nishes, the
"le systems request that PebbleSSD reset the BAM-based block
mapping via a vendor-speci"c NVMe command supported by our
prototype. The function of this command is to clear a region in the
NVRAM inside PebbleSSD.

The "le systems use the BAM-based block mapping only for the
purpose of recovery. Should an error occur, a kernel thread performs
recovery on the data blocks of this "le. The thread retrieves the
<inodeNum, offsetInFile > metadata from the BAM by reading
its content into host main memory and reconstruct the normal
tree-based block mapping.

6 EVALUATION
We run microbenchmarks to measure the performance of Pebb-
leSSD with a focus on the new commands it provides. Then we
measure the performance and e#ciency of log cleaning of both
F2FS and NILFS2 withremapand compare with their baseline im-
plementations. We refer to the customized versions asF2FS-opt

andNILFS2-opt, while we refer to the baseline asF2FS-baseline
andNILFS2-baseline. Finally we run workloads to quantify the
bene"t of fs_write on F2FS and NILFS2. Again, the customized
versions areF2FS-opt and NILFS2-opt, while the baseline ver-
sions areF2FS-baseline andNILFS2-baseline. In this section,
we describe our experimental setup and results in detail.

6.1 Experimental setup
The speci"cation of our SSD hardware platform is covered in Sec-
tion 4.1. We implemented PebbleSSD by modifying its original
reference "rmware provided by the SSD manufacturer. The orig-
inal "rmware supports only conventional block-based I/O, while
PebbleSSD extends the NVMe command set to provide additional
features, e.g.fs_write andremap. To allow host programs to in-
teract with PebbleSSD, we also modi"ed Linux NVMe driver and
block layer. Thus PebbleSSD supports not only block-based I/O,
but alsofs_write andremap. Before running the experiments, we
preconditioned the SSD by "lling it with random data multiple
times.
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The host machine that we use has a quad-core Intel Xeon E3-
1230 CPUs on a single-socket motherboard. This machine contains
32GB of DRAM as main memory and runs a customized Linux
3.16.3 kernel. We collected all results with hyper-threading disabled.

Microbenchmarks measure the bandwidth and latency of the
new commandsfs_write andremapprovided by PebbleSSD. To
measure PebbleSSDÕs bandwidth, four threads running on the host
machine issue commands to PebbleSSD continuously. To measure
latency, only a single thread issues commands to the SSD.

We applyremapand fs_write respectively to both F2FS and
NILFS to study the e$ects of each feature independently. To measure
the performance and e#ciency ofremapon log-structured "le
systems, we "rst run a subset of Filebench [4] workloads. We run
the workloads for equal amount of time on each baseline "le system
and its customized version. Then we manually trigger "le-system-
speci"c log cleaning subroutines which keeps executing until there
is no data to clean.

We run a subset of Filebench, an open-source implementation [13]
of TPC-C [14] and LinkBench [7] to quantify the bene"ts offs_write
on F2FS and NILFS2, comparing with their baselines.

6.2 Microbenchmarks
In comparison with originalwrite command, thefs_write com-
mand not only writes the block to SSD, but also updates its BAM.
Since we are concerned about the single command performance
here, we eliminated the overhead of Linux virtual "le system (VFS)
by allowing applications to sendfs_write commands to PebbleSSD
directly via ioctl . Figure 5 presents the throughput and latency
of fs_write and compares it with the originalwrite command.
The extra overhead caused byfs_write Õs linked list operations
is minimal andfs_write achieves almost the same performance
aswrite . Although as a single command,fs_write does not pro-
vide better performance thanwrite , but as we will demonstrate
in Section 6.4, log-structured "le systems can utilizefs_write to
improve the performance and lifetime of SSDs.

Another microbenchmark namedMOVEmeasures the perfor-
mance ofremapcommand.MOVErequires host program to move
data from source LBAs to destination LBAs. The baseline version
of MOVEimplementation "rst reads data from PebbleSSD into host
main memory and then writes them to their destination locations in
the SSD. In contrast,remap-based implementation uses theremap
command to remap data from source LBAs to destinations. Appar-
ently the baseline incurs multiple data transfer between the host
and PebbleSSD whileremap-based version does not su$er from
this overhead. As a result,remap-based version can achieve3.7⇥
improvement in throughput and reduces the latency by87%on av-
erage, as shown in Figure 6. Both implementation sends commands
from the host to PebbleSSD viaioctl directly.

6.3 E�cient log cleaning
Figure 7 depicts the e$ect of usingremapin the log cleaning of F2FS
and NILFS2. In most cases, a kernel thread executes the log cleaning
subroutine for F2FS and the kernel thread wakes up periodically,
typically between every30and60seconds. In order to measure how
much time it takes to clean all used segments in F2FS, we add an
ioctl to F2FS to trigger F2FS log cleaning mannually and let the log

cleaning subroutine run continuously until there is nothing left to
clean. For NILFS2, we use its ownnilfs-clean utility program [9]
that performs log cleaning and space reclamation after a certain
period of time speci"ed by the user. In our experiments, we set the
period to600seconds.

Before starting log cleaning subroutines, we "rst run the corre-
sponding workload to emulate a used SSD. Figure 7 (a) shows the
time required to "nish log cleaning of F2FS, and Figure 7 (b) shows
the amount of data written by F2FS log cleaning.F2FS-optspends
33%less time thanF2FS-baseline to "nish cleaning the segments
in average. Figure 7 (b) can account for the reason of this improve-
ment.F2FS-baseline always causes !ash write operations during
log cleaning, whileF2FS-optcan useremapto clean the majority
of data. In the case ofF2FS-opt, the log cleaning subroutine writes
up to 99%less data thanF2FS-baseline in average. The rest of
data are cleaned using theremapcommand which does not incurr
!ash write at all.

Figure 7 (c) and (d) depict the result for NILFS2 log cleaning.
Similarly, nilfs-clean writes up to 97%less data in the case of
NILFS2-opt than NILFS2-baseline because the former can use
remapto move data. Since NILFS2 is not optimized for parallel
storage devices e.g. SSDs,nilfs-clean does not fully utilize the
I/O bandwidth. Consequently, the saving in log cleaning time is not
as big as in F2FS.NILFS2-opt improves the SSD lifetime because it
incurs less !ash write thanNILFS2-baseline.

6.4 Write-optimized �le block index
We measure the impact offs_write on F2FS and NILFS2.F2FS-baseline
already writes only direct node blocks to the SSD duringfsync [24]
to improve the performance offsync . F2FS-optusesfs_write to
further avoid writing direct node blocks. To compare the e$ective-
ness in reducing the amount of data written to the SSD, we use a
metric called�le write ampli�cation similar to the concept in [28]
which is de"ned as the quotient of the total amount data written
(data and index blocks) over the amount of "le data blocks.

Figure 8 illustrates the advantage ofF2FS-optoverF2FS-baseline
andNILFS2-opt over NILFS2-baseline in a simple benchmark.
The benchmark executes four threads each of which writes data
to its dedicated "le synchronously. We assign each thread to its
own "le to avoid the contention for the lock on the "leÕs inode.
Figure 8 (a) shows that withF2FS-opt, the aggregate through-
put of the threads achieves1.28⇥ improvement comparing with
F2FS-baseline. Figure 8 (b) shows that the "le write ampli"cation
of F2FS-optis 28%lower than that ofF2FS-baseline. Figure 8 (c)
similarly shows that the benchmark throughput onNILFS2-opt
is 1.13⇥ the throughput onNILFS2-baseline. Figure 8 (d) shows
that "le write ampli"cation of NILFS2-opt is 24%less than that of
NILFS2-baseline. The performance improvement and reduction
in "le write ampli"cation result from fs_write that writes only
data blocks for bothF2FS-optandNILFS2-opt.

Figure 9 and Figure 10 further compare the e$ect of running more
complex benchmarks onF2FS-baseline,F2FS-opt,NILFS2-baseline
andNILFS2-opt. Figure 9 (a) presents the throughput of Filebench
OLTP benchmark, andF2FS-optoutperformsF2FS-baseline by
3%while NILFS2-optachieves9%improvement. Figure 9 (b) shows
the throughput of TPC-C varying the size of data set. The total
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(a) (b)

(c) (d)

Figure 7: Improvement on log cleaning e�ciency due to remapIn (a) and (b),F2FS-optwith remaprequires29%less time to clean the
segments thanF2FS-baseline, and writes96%less data in average (99%in the best case) during log cleaning. In (c) and (d),NILFS2-opt
also requires less time to clean the old segments thanNILFS2-baseline, and saves write tra#c by97%in average (99%in the best case)
during log cleaning.

data set size of TPCC-10 and TPCC-100 are approximately800MB
and8 GB respectively. Both benchmarks run on top of MySQL [8]
5.5 with InnoDB [6] whose bu$er pool size is16GB. In both cases,
F2FS-optoutperformsF2FS-baseline by a small margin and the
same holds forNILFS2-opt and NILFS2-baseline. Figure 9 (c)
shows the result for LinkBench with di$erent sized data sets. Sim-
ilarly, F2FS-optandNILFS2-opt lead to larger throughput than
F2FS-baseline andNILFS2-baseline respectively. The through-
put improvement is not high because evenF2FS-baseline and
NILFS2-baseline cannot fully saturate the IO bandwidth of Pebb-
leSSD, thus writing less data does not lead to larger throughput.

Figure 10 shows that for Filebench OLTP, TPCC-10 and LinkBench-
10GB,F2FS-optcan usefs_write to reduce the "le write ampli"-
cation from close to1.5to nearly1.0. Similarly,NILFS2-optreduces
"le write ampli"cation from 2.7 to 2.0. When the data set size in-
creases, especially in the case of LinkBench-100GB, the reduction in
"le write ampli"cation diminishes since MySQL will have to move
data between main memory bu$er pool and the SSD, leading to
lower write throughput. Consequently the workloads issue fewer
fsync to the underlying log-structured "le systems.

6.5 BAM space utilization
With remapandfs_write , PebbleSSD can make more e#cient use
of its internal NVRAM than conventional SSDs.

As described in Section 4.1, PebbleSSD exposes375GB !ash to
the host and has2 GB NVRAM to store BAM. Assume the total
amount of user-visible !ash is512GB for simpler calculation.

According to the implementation of original "rmware, a con-
ventional SSD based on this platform uses4 bytes for each address
mapping table entry, and each entry maps4 KB in logical address
space to the physical address space. This con"guration leads to
227 entries, consuming512MB of the BAM. Since the original SSD
keeps the PPN-to-LBA mapping in !ash memory, the space utiliza-
tion of BAM is about35% due to the logical-to-physical mapping
and some other system data structures.

To supportremap, PebbleSSD maintains both logical-to-physical
and physical-to-logical mappings in BAM. The entries in both tables
are 4 bytes in size and describes the mapping for4 KB regions.
Therefore, the total space consumption will be1 GB, leading to a
60% utilization of BAM.

For fs_write , the original address mapping table also occupies
512MB of BAM. Both the "le o$set table and inode table use8-byte
entries. The "le o$set table has227 entries, consuming1 GB BAM.
The inode table keeps an entry for each "le that is currently open
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Figure 8: Improvement on writing to �les with fs_write (a) shows that withfs_write , F2FS-optachieves1.28⇥ improvement in
throughput while (b) shows thatF2FS-optreduces "le system write ampli"cation by28%. (c) and (d) show similary results. Withfs_write ,
NILFS2-opt improves throughput by1.13⇥ and reduces "le write ampli"cation by24%, compared withNILFS2-baseline.

(a) (b) (c)

Figure 9: Performance comparison between F2FS-opt, NILFS2-opt and their baseline implementations In (a), Filebench OLTP
running on F2FS-optandNILFS2-opt achieve1.02⇥ and1.09⇥ improvement in throughput. In (b), TPCC running onF2FS-optand
NILFS2-opt can achieve slightly better performance than onF2FS-baseline andNILFS2-baseline respectively. In (c) LinkBench can also
achieve slightly larger throughput onF2FS-opt NILFS2-optthan onF2FS-baseline andNILFS2-baseline.

with read-write access. In our current system, we support1 million
"les that can be open for write at the same time. Considering the
load factor of the hash-based inode table, this requires approxi-
mately 16MB space in BAM. The space utilization of BAM can
reach80%.

7 RELATEDWORK
Many prior research e$orts have explored various techniques aim-
ing to extend the lifetime of !ash-based SSDs by writing less data.
In this section, we present a review of these e$orts and place Pebb-
leSSD in the context with them.
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Figure 10: Improvement on �le write ampli�cation for F2FS
and NILFS2 F2FS-optcan reduce "le write ampli"cation from1.5
to nearly1.0 for synchronous write-intensive workloads e.g. data-
base applications.NILFS2-opt can reduce "le write ampli"cation
from 2.7 to 2.0 for the same workloads.

7.1 Backward pointer
The mapping information stored by PebbleSSD in the BAM is sim-
ilar to the backward pointers in some previous work. Many "le
systems and FTLs have adopted the backward pointer mechanism to
reduce the overhead of persistent data migration and synchroniza-
tion. File systems, e.g. Pilot [32] "le system, Pangaea [34], NoFS [17]
use backward pointers to ensure system consistency. BtrFS [2] and
Backlog [29] maintain back references to support dynamic reloca-
tion of data blocks without !ushing index updates to persistent
storage. An object-based FTL, i.e. OFTL [28] stores for each page the
information of the object to which the page belongs. Such backward
reference resides in the !ash-based OOB region of each page, thus
does not support in-place update and requires !ash write opera-
tions. In contrast, PebbleSSD stores the mapping in dedicated OOB
region as BAM to support dynamic modi"cation. In addition, Pebb-
leSSD allows for easy and e#cient retrieval of each "leÕs mapping
by maintaining per-"le linked list of mapping table entries.

7.2 Address indirection
Most !ash-based SSDs introduce a layer of indirection due to the
FTLÕs address map [19]. Researchers have proposed a number of
FTLs [5, 16, 20, 21, 23, 27, 35]. CAFTL [16] exploits the hashed sig-
nature of data chunks to detect duplicates and reduce !ash writes,
leading to improvement in SSDÕs lifetime. FTL2 [35] implements
atomicty at the level of FTL so as to reduce the overhead of writing
database logs to !ash. DFTL [21] selectively caches page-level map-
ping. These approaches still focus on the normal logical-to-physical
address mapping table, while PebbleSSD goes a step further to use
BAM to enhance the !exibility of FTLs.

Several systems have also researched the possibility of achieving
e#cient !ash-write-free data movement by manipulating this map
directly. JFTL [18] remaps addresses of journal pages to their origi-
nal locations in the logical address space without writing the same
data to !ash memory. ANViL [36] allows host system to access the
address map and supports snapshot, deduplication and single-write
journaling. Researchers evaluated JFTL on a simulation platform,
while ANVilÕs address map resides in the main memory of host

machine. Furthermore, neither of them discussed how to extend
the idea of address map manipulation to an SSD with !ash-based
OOB. If the FTL stores the LBA in the spare space of each !ash page,
merely modifying the LBA-to-PPN address map does not ful"l the
goal of moving data in the logical address space. Instead !ash write
is inevitable to modify the metadata in the OOB region. In contrast,
PebbleSSD goes a step further to address this issue and presents an
evaluation of the e$ectiveness of its solution.

SHARE [30] is also able to remap addresses inside the SSD and
achieve write atomicity. SHARE caches a subset of the PPN-to-
LBA mapping entries in the SDRAM inside the OpenSSD [12],
therefore, the "rmware determines which entries to keep and which
to evict to !ash. This approach is able to handle large amount of
!ash with relatively small SDRAM, but requires extra logic at the
"rmware level to implement cache eviction policies. Furthermore,
system performance can also be a$ected by the size of the cache.
In contrast, PebbleSSD keeps the entire PPN-to-LBA mapping in
BAM for the functionality of remap. PebbleSSD needs larger BAM
size than SHARE, but does not require a cache management policy.
SHARE and PebbleSSD represent di$erent design trade-o$s and
considerations. Depending on the optimization goal, either can be
more preferable than the other.

7.3 Coordinated garbage collection
A storage system with an LFS running on a !ash-based SSD has
multiple layers of log structures, and the gaps between them lead
to ine#ciencies such as unnecessary data migration [37].

Researchers have proposed coordinating "le system log clean-
ing with SSDÕs garbage collection to improve !ash device lifetime.
Application-Managed Flash (AMF) [26] and ParaFS [38] both em-
ploy a coordinated garbage collection approach with supports from
both the FTL and "le system. During garbage collection, the host
"le system migrates data to its proper new locations by consulting
domain-speci"c knowledge about data placement, while the FTL
shoulders the responsibility of erasing !ash blocks for future use.
Both "le systems need to accommodate the physical characteristics
of !ash memory. For example, they need to ensure that a !ash block
is erased "rst before writing to its !ash pages. This potentially re-
quires a non-trivial re-engineering of the I/O path because general
"le systems do not have this limitation. Furthermore, host CPUs
are involved in the GC of !ash memory. In comparison, PebbleSSD
does not require the "le system to be aware of the physical layout
and characteristics of underlying !ash. Thus modi"cation of legacy
"le system is moderate, and host CPUs can also be freed from GC.

Coordinated GC has also been discussed in other conventional
"le systems running on SSDs. EXT3 [3] with nameless write [39]
allows the FTL to move valid !ash pages and inform the host "le
system of the new physical addresses of data pages viamigration
callbacks. PebbleSSD, in contrast, lets the "le system determine the
new logical addresses for its data.

7.4 Metadata caching
Some e$orts use NVRAM-based storage as a durable cache for data-
base or "le system metadata to reduce synchronous writes to !ash
memory. NVMFS [31] stores "le system metadata in NVM DIMMs
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attached to the memory bus. DuraSSD [22] uses non-volatile in-
device cache to support atomicity and durability. Cooperative Data
Management [25] considers NVM as a cache and allows the NVM-
resident copy to invalidate !ash-resident copy. In contrast, Pebb-
leSSD does not cache identical copies of data in NVRAM. Instead,
PebbleSSD stores metadata optimized for the characteristics of
BAM, saving host interface bandwidth and NVRAM space.

8 CONCLUSION
By providing BAM in the NVRAM-based OOB region, PebbleSSD
supports a range of useful features to improve device lifetime, in-
cluding write-optimized "le block mapping and fast, e#cient log-
cleaning. PebbleSSD exposes two new commands,fs_write and
remapallowing "le systems to access BAM. Log-structured "le sys-
tems can usefs_write command to avoid recursive updates on "le
index blocks, and useremapcommand to perform fast and e#cient
movement of valid data during log cleaning. Log-structured "le
systems achieve better performance while reducing !ash writes.
Therefore BAM is e$ective in improving SSDsÕ lifetime.
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