Rewriting Nested XML Queries Using Nested Views

Nicola Onose* Alin Deutsch*

Yannis Papakonstantinou?

Emiran Curtmola*

Computer Science and Engineering, University of California San Diego
{nicola,deutsch,yannis,ecurtmola}@cs.ucsd.edu

ABSTRACT

We present and analyze an algorithm for equivalent rewriting of
XQuery queries using XQuery views, which is complete for a large
class of XQueries featuring nested FLWR blocks, XML construc-
tion and join equalities by value and identity. These features pose
significant challenges which lead to fundamental extension of prior
work on the problems of rewriting conjunctive and tree pattern
queries. Our solution exploits the Nested XML Tableaux (NEXT)
notation which enables a logical foundation for specifying XQuery
semantics. We present a tool which inputs XQuery queries and
views and outputs an XQuery rewriting, thus being usable on top
of any of the existing XQuery processing engines. Our experimen-
tal evaluation shows that the tool scales well for large numbers of
views and complex queries.

1. INTRODUCTION

The ability to equivalently rewrite queries using views is required
by multiple data management tasks. For example, a query proces-
sor can speed up the processing of a query when part of the com-
putation needed by the query has already been performed by the
materialized views or cached queries. Another application comes
from the field of privacy-preserving data publishing, in which a
data source answers only those client queries which can be rewrit-
ten using exclusively views the data owner agrees to publish [27].
Finally, in data integration views have been used to describe the
source content (in Local-As-View architectures) and the source ca-
pabilities. We point the reader to the survey [17] for a comprehen-
sive list of applications of rewriting queries using views.

The XML data model emerges as equally important to the rela-
tional model for many of the data management problems that re-
quire answering queries using views. At the same time, solving the
problem in the context of XML and XQuery presents a set of novel
challenges. First, data and queries are nested. Second, XQuery
has list semantics, which degenerates to bag semantics if the un-
ordered keyword is used, and to sef semantics in the presence of
the duplicate-eliminating primitive distinct-values (as in Exam-
ple 1.1 below). Any rewriting algorithm must be equipped to uni-

*Supported by the NSF under grants I1S-0415257 and 11S-0347968 (CAREER).

TSupported by the Gordon and Betty Moore Foundation and by NSF grants EAR-
0225673 and ITR-313384.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA.

Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

formly test the equivalence of the produced rewriting to the original
query under any of these semantics. Contrast this with prior work
on XPath (and relational) rewriting, which use only ser semantics.
Third, XML elements may be compared for equality on either their
value or their identity; no such distinction comes up in conjunctive
queries and XPath. Finally, XQuery copies XML subtrees in the
result construction phase, precluding the use of XML node ids for
assembling the view data into the query result.

We provide an algorithm which, given an XQuery) and a set
of XQuery views V = {Vi,...,V,}, discovers a rewriting query
RW of @ using V. We follow the classic definition of rewrit-
ing query [17]: RW is evaluated on the views and for all possi-
ble database instances D its result RW (Vi(D), ..., V,(D)) co-
incides with the result Q(D) of Q. The algorithm is sound for
full XQuery queries and views, and is complete for an expressive
subset of XQuery called OptXQuery [9], which includes nesting,
optional use of duplicate elimination (using the distinct-values
keyword), and allows in the where clause conjunctions of id-
based and value-based equality conditions, as well as existential
quantification (Some clauses).

EXAMPLE 1.1. Consider the sample data of Figure 1 and the
following query Q) that groups paper reviews by the papers’ au-
thors; it is a minor variation of query Q4 from W3C’s XMP use
case [30]. The distinct-values function eliminates duplicates,
comparing elements by value-based equality [31]. ' The for loop
binding $a (called the $a loop) has set semantics since the output
list of distinct-values has no duplicates and the order of its ele-
ments is non-deterministic. The inner for loop has bag semantics
i.e., duplicates are not removed but the order is non-deterministic
since the loop is in the context of the unordered $a loop.

let $doc := document(” DBLP.xml”)
for $a in distinct-values($doc//paper|[review J/author)
return (evaluation){ $a, (Q)
for $p in $doc//paper
$rin $p/review
where some $al in $p/author
satisfies $al eq $a
return $r
}(/evaluation)

Consider now the following view V', which outputs a list of feedback
elements, where each one contains a review and the list of authors
of the corresponding paper.

'The query can be expressed in a shorter form by replacing its
where clause with “where $a eq $p/author” or by replac-
ing the inner for with “$doc//paper|author eq $a)/review”. It
is well known [21] how to reduce such syntactic sugar (use of “eq
” or use of predicates in paths) to OptXQuery.

let $doc := document(’DBLP.xml’)
for $p in $doc//paper, $r in $p/review
return (feedback){ $r, (V)
(authors){ $p/author }(/authors)
}(/feedback)

Since the view V' returns all author and review information which
is pertinent to the query Q, there is a rewriting RW of Q using V :*

let $doc := document(V')
for $a2 in distinct-values($doc/feedback[review J/authors/author)
return (evaluation){ $a, (RW)

for $fin $doc/feedback

$rin $ffreview
where some $al in $f/authors/author
satisfies $al eq $a
return $r
}(/evaluation)

Our query processor discovers rewritings that use the views in
order to obtain the variable bindings generated by the query.

To the best of our knowledge this is the first work on rewriting
using views for XQuery, which also provides formal guarantees of
completeness for a large subset of XQuery.

Prior work on rewriting using views for XML queries (reviewed
in Section 6) focused on the XPath language [3, 33]. The resulting
algorithms involve detecting query subexpressions subsumed by
the view. The subsumption test is enabled by a pattern-based rep-
resentation of XPath expressions called tree patterns [2, 22], which
reduce the test to matching the view pattern against the query pat-
tern. The standard specification of XQuery semantics does not sup-
port the extension of XPath rewriting techniques as it provides no
pattern-based query representation. We therefore adopted NEsted
XML Tableaux (NEXT) [9], a pattern-based notation, which consol-
idates navigation in the minimum number of tree patters and hence
maximizes rewriting opportunities. NEXT can represent a large
subset of XQuery, called OptXQuery and introduced in [9]. OptX-
Query is a natural boundary within which the rewriting algorithm
is guaranteed to find rewritings whenever they exist. The OptX-
Query subset includes the XPath language, and it fully subsumes
the c-XQuery subset of conjunctive, nested XQueries whose con-
tainment is studied in [13].

Our contributions are:

1. An algorithm for rewriting queries from the OptXQuery sub-
set of XQuery using exclusively views from the same sublanguage.
The algorithm equivalently rewrites the variable binding stage of
the query, which is where the large costs of navigations, joins and
selections of data intensive applications are incurred. If the doc-
ument order of the query result is immaterial (due to the use of
distinct-values and unordered keywords), then the algorithm
is complete, i.e., it always finds an equivalent rewriting, if such ex-
ists (Theorem 3.1).

2. We analyze the complexity of checking the existence of a
rewriting, showing NP-completeness in the width of the query’s
NEXT pattern representation. This measure (defined in Section 3.5),
is typically much smaller than the query size, depending only on
the number of variables shared across nested query blocks and the
number of variables involved in equality conditions. For instance,
the width of query () in Example 1.1 is 3 . Our rewriting algorithm
is worst-case exponential in the query width, which is optimal be-
havior: it runs in PTIME when the query is acyclic, (for which it

2We support views which output a collection of XML elements,
rather than a well-formed document with a single root element (we
generate an artificial root). For presentation simplicity, we do not
show the navigation to the root element.

turns out that the width is 1) its performance degrading gracefully
with increasing query width. The acyclic case includes XPath tree
patterns.

3. We introduce a technique for extending the rewriting algo-
rithm from OptXQuery to arbitrary XQuery, by identifying and
rewriting the OptXQuery subexpressions. The technique is sound,
in the sense that it creates only equivalent rewritings. It is not com-
plete, but this is an unavoidable consequence of the undecidability
of checking rewriting existence for (even slightly) more expres-
sive queries and views than OptXQuery. Indeed, even relational
rewriting algorithms perform a best-effort approach and are incom-
plete for full SQL. Our approach combines the benefits of complete
rewriting feasible for NEXT/OptXQuery with the easy-to-engineer
but incomplete techniques based on isomorphically matching com-
mon sub-expressions between query and view [12].

4. We provide a tool which inputs XQuery queries and views
and outputs an XQuery rewriting, thus being usable on top of any
of the existing XQuery processing engines. A demo of the tool is
available at http://db.ucsd.edu/reform.

5. We report on our experimental evaluation, which measured
rewriting times of around 1 second for as many as 128 views, for
queries of up to 16 nesting levels, 48 variables per level.

The remainder of this paper is organized as follows. Section 2
describes the system architecture, OptXQuery and its correspond-
ing NEXT notation. Section 3 presents the rewriting algorithm, its
implementation, and analyzes its complexity. The extension of the
rewriting algorithm to arbitrary XQueries is given in Section 4. We
report on the experimental evaluation in Section 5. Related work is
discussed in Section 6.

2. ARCHITECTURE AND FRAMEWORK

XQuery XQuery
views

Open source UCSD’s NEXT
parser normalizer

NEXT| NEXT
query | view definitions

NEXT J
rewriting

NEXT2XQuery NextRewrite

l XQuery rewriting

Figure 2: NEXT XQuery Processor Architecture

XML and Equivalence We model an XML document D as an
ordered labeled tree of nodes Nxasr, edges Exarr, a function
A : Nxmr — Constants that assigns a label to each node, and
a function : Nx a7, — IDs that assigns a unique id to each node.

Equivalent rewriting. We start from the classic definition of the
equivalent rewriting problem (taken from [17]), adapting it for the
XML case. Let Q be a query and V = {V4,...,V,} be a set of
view definitions. The query RW is an equivalent rewriting of () us-
ing V if RW refers only to the views in V' and for every input doc-
ument D, () and RW return isomorphic XML results: Q(D) (the
result of @ on D) is isomorphic to RW (Vi(D), ..., V,(D)). We
consider two flavors of isomorphism: unordered and ordered, lead-
ing to ordered, respectively unordered rewritings. Unordered iso-
morphism disregards the sibling ordering within each node, while
ordered isomorphism preserves it. Unordered rewritings are ap-
propriate whenever an XQuery contains a distinct-values or an
unordered keyword, which cause the output XML tree to be non-
deterministically ordered [31]. The unordered keyword is typ-
ically used in data-centric applications of XQuery (in which the
document order is immaterial, and only the data contents matters).

/,<np8; qaper5>
(

(np1; Faper) (np2; Faper) nps; Ipaper)
(naq; author){naz; author) (nri;review) (nas;author)(nas; authormmm; review) (nas;author)(nae; author) (nra;review)

| |
(nv1; Kevin) (nvg; Mary) (nus; Reviewl) (nvg; Alice) (nvs; Kevin) (nvg; Review2)(nvr; Review3) (nvs; Mary) (nvg; Alice) (nvio; Review4)
Figure 1: Input XML data

XQ = (){X0,, .., X0, H/m) ®1)
X0 = (MAXQy,... X0, H/m) W (2)
or Vary in Pathy, . .., Vary, in Pathy, (P3)
L XQu, *_XQ2 _ (where CList)?
| for(Vin XQ) + (where CList)? return XQ groupby (Varh | [Var,]) (Var} | [Var),])
| (document (“Constant”")|Var) ((/|//)Constant) return X0,
| Constant Path ::= (document (“Constant’)|Var)((/|//)Constant) (P4)
e CList::= Cond (and Cond)x (P5)
| distinct-values(xQ) Cond::= Var eq (Var|Constant) (P6)
| unordered (XQ) |Var is Var P7)
CList ::= Cond (and Cond) * Figure 4: NEXT Query Syntax
Cond Vary eq (Varz|Constant) of (NEXTg)). A groupby construct inputs the tuples of variable

Variis Vara
some (Varin XQ) + satisfies CList

Figure 3: OptXQuery

The distinct-values keyword is unavoidable in XQueries per-
forming duplicate elimination or grouping by value, as illustrated
in Example 1.1. When neither keyword appears in the query and
the ordering of its answer XML tree is relevant, we resort to ordered
rewritings.

Architecture We have borrowed the normalization module of
UCSD’s NEXT processor [9], which inputs a query and views ex-
pressed in XQuery, applies a series of normalization rules (de-
scribed in detail in [9]), and produces Nested XML Tableaux (NEXT)
of the query and the views (see Figure 2). The NEXT representa-
tion consolidates all variable binding operations regardless of whether
they appear in the for or the where clause and regardless of
whether they are in the context of set (i.e., distinct-values) or bag
semantics in the in clause. This consolidation facilitates the match
of the navigation of the query with the navigation of the view. Not
all XQuery expressions can be normalized into a NEXT representa-
tion. According to [9], this is possible if the given XQuery follows
the OptXQuery syntax of Figure 3 and refrains from set/list/bag
equality comparisons [31]. We sketch in Section 4 how arbitrary
XQueries are handled. This involved extending the NEXT notation
to accommodate all XQuery features, and detecting and rewriting
only the maximal OptXQuery subexpressions.

The syntax of NEXT (see Figure 4) uses only a subset of Op-
tXQuery features: (i) in clauses are (one-step) path expressions,
(ii) where clause conditions are conjunctions of equality con-
ditions involving variables and constants and (iii) there is no ex-
plicit distinct-values. These restrictions are compensated by a
duplicate-eliminating projection operator, which in its full-blown
version [9] is a group-by construct. However, the grouping func-
tionality is not needed by the rewriting algorithm. We keep the
name groupby for consistency with the NEXT terminology and
we advise the reader to think of groupby as duplicate-eliminating
projection, as described below.

The query () and the view V' from Example 1.1 are rewritten
into the NEXT normal forms below. NEXT extends FLWR expres-
sions with a groupby clause that consists of a list of group-by vari-
ables. A variable from the groupby list is called groupby-id vari-
able if it appears within brackets (e.g., variable $p1 of (NEXT()),
and is called groupby-value variable otherwise (e.g, variable $a

bindings produced by the preceding for and where clauses and
projects the variables of the groupby list, eliminating duplicates.
To detect duplicates, tuples are compared component-wise, looking
for equal values on the bindings of the groupby-value variables and
for equal id’s for the groupby-id variables. The return clause is
executed once for each tuple in the output of the groupby clause.
for $p in document(” DBLP.xml")//paper,
$rin $p/review, (NEXTq)
$ain $p/author
groupby $a
return (evaluation){ $a,
for $plin document(” DBLP.xml")//paper,
$alin $pl/author,
$rlin $pl/review
where $al eq $a
groupby [$p1], [$r1]
return $rl
}(/evaluation)
for $pin document(” DBLP.xml")//paper,
$rin $p/review (NEXTy)
groupby [5r], [$p]
return (feedback){ $r,
(authors){
for $ain $p/author
BY { groupby [$a]
return $a
}{(/authors)
}(/feedback)

The tree of groupby blocks. We call groupby block a NEXT
expression described by Production (P3) of Figure 4. For example,
NEXT¢ contains blocks B? and B? as illustrated above. If a
block B’ is immediately (transitively) nested within block B, we
say that B’ is a child (descendant) of B and B a parent (ancestor)
of B’. The groupby blocks of a query are therefore organized
in a tree structure, called the groupby tree. The bound variables
of a block B are those variables $v appearing in a “$v in parh”
expression. All other variables are free in B, but must be bound in
some ancestor block of B. For instance, $a is bound in B? and
free in BY.

Pattern-based graphical representation of NEXT. NEXT queries
have a graphical, pattern-based notation that extends the well-known
tree patterns used in XPath-related works. The representation de-
picts the tree of groupby blocks, labeling each block with a pattern,
a list of groupby-value variables, a list of groupby-id variables, and
a return function. A NEXT pattern P = (F, EQuai, EQ;i4) con-
sists of a forest F' of tree patterns, which capture navigation. As
is common in tree pattern notations, each node is labeled with (i)

B

a variable and (ii) the label that this node matches to. Edges are
labeled with / or // depending on whether the corresponding nodes
are in a child or descendant relationship. FQ,4; is the set of value-
based equalities, denoted by dotted lines, and FQ;4 is the set of id-
based equalities (denoted by double dotted lines, though not needed
in our example). The bound variables of a NEXT pattern are pre-
cisely the variables which are the target of some /- or //-edge. The
return functions consist of element creation and concatenation and
take as parameters variables and nested blocks. In the latter case,
the meaning is that, upon instantiation, the parameter is replaced
by the result of the corresponding block.

pQ

[7] & = (evaluation)
$a,
.a paper ($p) BQQ
(/evaluation)

doc(DBLP.xml)

review($r) author($a)
3

doc(DBLP.xml) ‘.‘ Py fQ =$rl
Q Q. . £ Q : 2
Bz (Py i gptgrt 5 fy) ,
paper ($p1)

author($al) --r-eview($r1)

pV

[-7] £ = (feedback)

doc(DBLP.xml)

|| o v
BY (F’1V: ;$r.9p ;f1v) paper($p) E?Utiﬁrs> >‘BZ
authors
review($r) (/feed back)
v
Vo v v $p {L
By (P, ;5%a5f,) f2v=$a

author($a)

Figure 5: NEXT for (Q and V' from Example 1.1

p AW
doc(V.xml) P IHW
feedback($f2)
/ } ast) W = (evaluation)
authors($as
BFW(PFW:%?:;fr‘W) $a2,
review($r2) | RW
author($a2) B2
. evaluation
doc(vl.xm\) ‘sz— </ >
RW RW RW .
By (P, ;88 ;i) . RW _
2 feedback($f3) 2 =$r3
authors($as3) ,:
review($r3) | ,"
author($a3)-’

Figure 6: NEXT for RWW from Example 1.1

EXAMPLE 2.1. Figure 5 shows the NEXT representation for
Q and V, and Figure 6 shows the same for RW. In each case,
we see the tree of groupby blocks at the left, followed by the
corresponding NEXT patterns, and to their right, the return func-
tions. The second argument of the groupby blocks shows the list of
groupby-value variables (3a for BlQ, empty for B2Q, BY and BY).
The third argument gives the list of groupby-id variables (empty for
B, $p1, $r1 for BS).

Understanding of the rewriting algorithm is facilitated if one
thinks of the result of NEXT query @ on an XML document D as

Table 1: Result of NEXT’s binding stage

BY
$a B ;J
cauthors | ol [8ri]
Kevin np1 nrL
</author> np2 nr2
np2 nrs
author> | _[Spll_T8r1]
Mary npi nri
</author> np3 nra
—authors | 5P [SrIT
Alice np2 o mr2
</author> np2 nrs
nps nrq

being computed in two stages. First, the binding stage computes all
variable bindings by matching the NEXT patterns against the XML
input. Bindings are organized in a nested relation according to the
nesting of groupby blocks. We call this nested table the binding
table. Next, the tagging stage operates on the binding table, con-
structing an XML fragment for each tuple in the nested relation
by calling the appropriate return function. Denoting with Q* the
function (from XML documents to binding tables) implemented by
the binding stage, and with Q"¢ the function (from binding tables
to XML documents) implemented by the tagging stage, we have
Q"(Q" (D)) = Q(D) for every XML document D and NEXT

query Q.

EXAMPLE 2.2. For the sample input provided in Figure I,
NEXTq'’s binding stage yields the nested relation of variable bind-
ings shown in Table 1. Notice that the binding table’s attribute
names coincide with the variable names and the names of the nested
groupby blocks. For each tuple, the attributes named after vari-
ables hold the corresponding bindings of groupby variables and
the attributes named after the nested groupby blocks recursively
hold the corresponding set of bindings, which is in turn a nested
relation.

3. THE REWRITING ALGORITHM

Given a NEXT query @ and a set of NEXT views V/, algo-
rithm NEXTREWRITE equivalently rewrites the binding stage of
@ to use solely the views. Since Q)’s tagging stage is independent
of how the variable bindings were obtained, it is reused. NEX-
TREWRITE obtains a query RW, such that (i) RW™ is Q"%, (ii)
the binding stage of RW is expressed only in terms of the views
and returns the same bindings as the binding stage of @) for each
XML document D (preserving their order if ordered rewritings are
sought): Q""(D) = RW"™(D). Since RW = Q" o RW"™
and Q = Q" o Q"™ it follows that RV is equivalent to Q.

To find RW"", NEXTREWRITE proceeds in three phases.

Phase 1 identifies all variables = of () whose bindings are also
produced by some view V' and can therefore be retrieved by navi-
gation into Vs output. This navigation is called an alternate view
access path towards x’s bindings. The view access paths are (re-
dundantly) added to). Call the resulting expanded query Q k.

Phase 2 restricts the expanded query @) by dropping all origi-
nal query navigation and keeping only the view access paths added
during the expansion. Query variables in the tagging and groupby
components are appropriately replaced. Order-related checks are
performed at this point when ordered rewritings are of interest. The
result is the candidate rewriting RW, which performs a join of the
alternate view access paths.

Finally, Phase 3 checks whether the candidate rewriting RW is
truly equivalent to Q). Equivalence may fail if the join of the view
access paths is lossy, i.e. returns too many bindings, or due to the
loss of element identities caused by XQuery’s copy semantics for
result construction. This is not the case in our example.

3.1 Phase 1: Detecting View Access Paths

This phase detects alternate access paths through the views towards
the bindings of the query variables. The access paths are detected
via mappings from the views to the query and are implemented
by navigation patterns which invert the view return functions. We
detail these concepts next.

View access paths. Given a vector g of ()’s variables and an
equal-arity vector Ty of V’s variables, we say that there is an ac-
cess path through Zv to Z iff (i) for all documents D, the bindings
of T are a subset of the bindings of Zv, and (ii) the bindings of
Ty are retrievable from the output of V.

Inverse of a return function. Views do not return their vari-
able bindings directly, but instead construct new XML output from
them. The view’s return functions must hence be inverted to re-
trieve the bindings. Given the return function f of a NEXT block,
we denote the inverse of f with Inv(f). For each tuple of variable
bindings ¢, f(t) outputs an XML fragment z, while Inv(f)(x) re-
trieves from x a copy of ¢. The reason only a copy of ¢ (as opposed
to t itself) is accessible is that XQuery semantics specifies that a re-
turn function’s output is constructed by copying the XML subtrees
to which the view variables are bound, thus losing the identities of
element nodes [31]. Phase 3 of the algorithm determines whether
these copies suffice for rewriting. We illustrate the inversion below.

EXAMPLE 3.1. In Example 1.1, there is an access path to Q’s
variables $r, $a through V'’s variables $r, $a, whose bindings are
retrievable by navigating into V'’s output. The navigation pattern
of the access path is obtained from Inv(fY) and Inv(f3) (shown in
Figure 7 (a)), by adorning with fresh variables each internal node
of the tree corresponding to the return function’s XML construc-
tors. To capture the fact that the bindings of variable $a returned
by [y are children of the authors element constructed by f, we
add a /-edge from $as to $a. The resulting inverse functions spec-
ify that, in order to navigate to an author element in the view
output, we need to first navigate to an authors element and then
continue with a nested navigation to its children.

Invertible NEXT views. In order to invert NEXT return functions,
we sometimes need to go outside of the language and use naviga-
tion to certain positions in a list. Take for instance the query

for $p in doc(in.xml), $z in $p/c, $y in $p/c,

return (r)(a)$z(/a){(a)Sy(/a){/r)

in which navigation to a children of the constructed r elements
does not disambiguate between the bindings of $z and those of $y.
However, we can do so with an inverse function which navigates
to the first a child for $z, and the second for $y. Notice that if
in the above query, $y was instead bound to $p/d, we could still
disambiguate by navigating along r/a /c for the bindings of $z and
along r/a/d for $y.

The return functions of arbitrary XQueries are not necessarily
invertible (consider aggregates for instance, where one cannot nav-
igate into the aggregate result to reconstruct the arguments). How-
ever, a sufficient condition for a NEXT query to be invertible is that
for each of its return functions f, (i) all nested groupby block ar-

guments B of f appear within an element constructor in f: (a) B(/a),

or (ii) f has at most one nested groupby block argument.

(a) access path through {$p,$r} of PY to {$p,$r} of P1Q
(witnessed by mapping m1)

Q
doc(V.xmi) ity doc(DBLP.xm) [Goc(DBLP.xm) (o]
| —f
feedback($f) paper($p) paper ($p)
review($r) authors($as) review($r) —— TP review($r) author($a)
v v B Q
sas rp) . l& doo(DBLPxm) P2
| 1)
$a author($a) paper (Sg1) .
author($at)‘ o r_e:/iew($r1)

(b) access path through {$p,$r,$a} of P \1/ and P%/to {$p,$r.$a} ofP?&
(witnessed by m2)

L]
doc(DBLP.xml) Py
[

Q
doc(DBLP.xml) doc(V.xml) Py

paper($p) /——793997 ($p) feedback($f2)
review($r) _ revwewulho‘v(%) review($r2) authors($as2)
s @ doc(DBLP.xml) 3 P?
paper ($p1) ,"
author($a) e
aulhor($a1)’ o ?e—view(sn)
v o
(c) access path through {$p,$r} of Py to {$p1.$r1}of Py

(witnessed by m3)

v Q
doc(DBLP.xml) lL doc(DBLP.xml) doc(V.xml) Py
paper($p) paper ($p) feedback($f2)
review($r) review($r) au(hor(?a) review($r2) authors($as2)
v Nt
Pa N Sl
$p Vo T mee -author($a2)
)
| doc(DBLP.xml) E Py
author($a) N

‘.
/

paper (sp1) .

au(hor($a1)‘ review($r1)

(d) access path through {$p,$r,$a} ofPY and Pgto {$p1,$r1,$a1} ong
(witnessed by m4)

doc(DBLP.xml) P |V doc(DBLP.xml) doc(V.xml) P
paper($p) paper ($p) feedback($f2)
review($r) review($r) author(tija) review($r2) authors($as2)

] l
) L T -author($a2)

$p .
doc(DBLP.xml) + doc(V.xml) pd

|
author($a) § " ;
b paper ($p1) .*

feedbback($f3)

aythor($al) TFeview($r1)

review}($r3) authors($as3)

™
(e) result of Phase 1 @
doc(DBLP.xml) doc(V.xml) ﬁ
paperl(lg;p) feedback($f2)
rewew($r)’ ’ -au\h?r($fx) :e:/ie:lv($v2) authors($as2)
K Tt author($a2)
doc(DBLP.xml) ’:' doc(V.xml) . ‘PS
paper ($p1) feedbback($f3) \
amhgr\(?aj) ’ '—revwew(‘$r1) revie;\}($r3) authors($as3) ::
e f_itiﬂ_w_r(_ﬂiaii) ,"’

Figure 7: Phase 1 of NEXTREWRITE for),V from Example 1.1

Detecting access paths using mappings. We now focus on how
access paths are detected. By definition, an access path through
view variables Zy towards the query variables ¢ means that the

set of bindings of Z is contained in the set of bindings of Zv. We
adopt the containment test from [9], which characterizes contain-
ment by the existence of NEXT pattern mappings, which we shall
henceforth call simply mappings. It follows from [9] that there is
an access path to Z¢ through Zv if there is a mapping from V to Q
which maps Zv into Zg, and if V’s return functions are invertible.

DEFINITION 3.1. (NEXT pattern mappings [9]) A mapping
m from NEXT pattern P; to NEXT pattern P> maps the variables
of P1 into variables of P such that

(i) variables map to variables of the same tag label,

(ii) the source and target variables of each /-edge in P, map to
the source, respectively target variable of some /-edge in Ps,

(iii) the source and target variables of each //-edge in P, map to
the source, respectively target of a path of /- and //-edges in P,

(iv) for each id-equality v is u in Py, the equality m(v) is m(u)
is in the closure of P»’s id-equalities under reflexivity, symmetry,
and transitivity, and

(v) for each value-equality v equ in Py, the equality m(v) eqm(u)

is in the closure of P»’s value-equalities under reflexivity, symme-
try, transitivity, and the rule x ISy = x eqy. o

EXAMPLE 3.2. Figure 7 illustrates Phase 1 of algorithm NEX-
TREWRITE on the running example. For every view access path to
its variables, the query is expanded with the appropriate naviga-
tion given by the view inverses. Each snapshot shows the mapping
(depicted by arrows) which detects an access path, and the succes-
sor snapshot shows the query after adding this access path. The
value equality conditions (shown by dotted lines) record the corre-
spondence between query variables and the view variables provid-
ing their alternate access path. Snapshots (a) and (b) show access
paths detection for block BlQ, and similarly (c) and (d) for block
Bg‘g . The result of Phase 1 is shown in Snapshot (e) which con-
tains, besides the original query patterns, the NEXT pattern of the
rewriting candidate RW (compare to Figure 6).

Exploiting view block nesting for non-redundant mapping com-
putation. According to XQuery semantics, when a nested block is
correlated by shared variables to an ancestor block, the bindings of
the nested block’s free variables are provided by the ancestor block.
This means that whenever a view block BV provides an access
path, the access to the bindings of BY’s free variables is provided
by ancestor blocks of BY . Therefore, the access path through BY
must be an extension of an access path through B" s ancestors.
Similarly, the mapping m witnessing an access path through BY
must be an extension of a mapping m, witnessing an access path
through the ancestors. By extension, we mean that m and m,, agree
on shared variables. To avoid redundant rediscovery of ancestor
mappings, Phase 1 visits the view’s groupby tree in a top-down
fashion, finding mappings m,, from ancestor blocks once, and re-
cursively extending them to nested blocks if possible.

EXAMPLE 3.3. Snapshot (a) in Figure 7 shows the mapping
m1 = {$p — $p,$r — $r} of P\ into PS. Mapping ms in
Snapshot (b) is the extension of my to Py using {$a € PY —
$a € PlQ} To avoid clutter, we only show the arrows for the
extension.

Congruence Closure. The congruence closure operation is needed
to expose implicit mapping opportunities. See for instance Figure 8
for patterns P¥ and P%. P¥ has no mapping into P?, as the only
way to map $uz is into $x2, which has no d-child to map $u4 into.
However, from the value-equality of $x2 with $z4, we can infer the
existence of a d-child under $x2, call it $x6, which is value-equal

pV pQ CongruenceClosure(p @)
asu,) a(sx,) alsx,)
b($u,) b($x,) b(§x4) b($x,) b($x,)
oSuy) dBu,) | |o@xy) dsxg) | [olexy) disxg) c8x;) dBx)

Figure 8: CONGRUENCECLOSURE enables mappings

to $z5 (and, symmetrically, that of a c-child $z7 which is value-
equal to $x3). $x¢ can now serve as target for $us. Procedure
CONGRUENCECLOSURE (shown in the pseudocode below) makes
this kind of inferences by exposing additional mapping targets.

3.2 Phase 2: Candidate Rewriting

Phase 2 restricts the result of Phase 1, keeping only the view
access paths. To this end, it identifies all variables that can be
dropped from the query’s group-by lists, substituting the remaining
ones with view variables as dictated by the view access patterns.
If no appropriate view variables are found, the rewriting fails. Ad-
ditional failure cases apply when ordered rewritings are sought, or
due to the copy semantics of XQuery result construction (explained
below). The new return functions of the rewriting are obtained by
applying the same substitution to the query’s return functions.

Dropping groupby variables. To check whether a groupby
variable = can be dropped, we test that (i) does not appear in
any query return function, and (ii) in the groupby list, x appears
together with some other variable y which determines z’s value
or id (depending on whether = is a groupby-value of groupby-id
variable). This test is necessary to preserve the cardinality of the
groups output by the binding stage. For groupby-id variables, the
bin}dings of x are determined by those of y if y binds to children of

Replacing groupby variables. When replacing a groupby vari-
able v of the original query with a variable u of the view, we must
make sure that the rewriting generates the same groups of variable
bindings as the query. To this end, the bindings of both variables
should ideally be identical (same value and identity). This means
that v can only be replaced with variables u which are at least
value-equal to v. In addition, if v is a groupby-value variable, it
may be replaced with u regardless of whether w is a groupby-value
or groupby-id variable, since the id of u does not contribute to the
groupby result. But if v is a groupby-id variable, it must be re-
placed only by a groupby-id variable u since groupby-value vari-
ables lose the identity (and cardinality) of their bindings.

EXAMPLE 3.4. Figure 6 displays the NEXT form of the can-
didate rewriting obtained for the query and view from Example 1.1
by restricting the Phase 1 result from Snapshot (e). The groupby
tree block is isomorphic to that of () and the patterns navigate ex-
clusively into the views. The groupby-value variable $a has been
replaced by $az, since author values can be obtained from the view
as well, as witnessed by the value-equality between $a and $as.
The groupby-id variable list $p1,$r1 has been first restricted to
$r1, since it determines $p1 which is not used in the return func-
tion and the nested blocks. Then $r1 is substituted by $r3 accord-
ing to the value-equality. All these replacements generate [TV
and &V in Figure 6, obtained from le and ff in Figure 5 (by
replacing variables $a with $a1 and $r1 with $r3).

3Other cases requiring XML Schema information are: (i) when z
and y are siblings, both non-optional, sharing their tag names with
no sibling; (ii) when y binds to x’s parent, x shares its tag with no
siblings, and is not optional; (iii) in the presence of an XML key
constraint.

Issues of copy semantics. The copy semantics of XQuery views
adds an additional technical problem: since the view’s output ele-
ments are copies of input elements, they lose the original identities
and there is no hope to find a view groupby-id variable u whose
bindings have the same identities as those of v. Fortunately, it is
sufficient if the identities of u’s bindings are in one-to-one corre-
spondence with those of v’s bindings. This ensures the same num-
ber of groups regardless of whether we group by v or u, and the
same outcome of is tests if we substitute v for u in them. If Vs
output extracted by u was created by copying the same elements
as v binds to, then this one-to-one correspondence is guaranteed by
the XQuery copy semantics. The above restrictions for groupby-
variable replacement are only necessary, not sufficient for preserv-
ing the number of groups produced by the binding stage. The final
check is performed in Phase 3.

Assembling view access paths for ordered rewritings. The order
of an XQuery’s result corresponds to the order in which variable
bindings are generated in the binding stage. Normalization pre-
serves ordering: a clause groupby $z, $y, $z can only be obtained
if, before normalization, the for loop binding $x appears before the
$y loop, which in turn appears before the $z loop. Consequently,
the order of the variable bindings is induced by the lexicographic
ordering of the variables in the groupby lists. For instance, clause
groupby $z, $y, $2 orders the triples of bindings first by the doc-
ument order of the bindings of $x, breaking ties by the order of $y
bindings, whose ties are broken by the order of the $z bindings.

When ordered rewritings are sought, we must preserve the initial
ordering of the query’s groupby variable list Z¢ when replacing
them with view variables Zv . To this end, we search for an ordering
of the view access paths which imposes on Zv the order desired
for Zg. This is not always possible, as illustrated by Example 3.5,
which shows a case with an unordered but no ordered rewriting.

EXAMPLE 3.5. View Vi below provides an access path for
variables $x,%z of query Q, and Va an access path for variable
$y. Q has no ordered rewriting using V1 and Vs, since the two
possible orderings of the view access paths yield the groupby lists
$x, %2, $y and Sy, $x, $2, but not the desired $x, $y, $z.

Q: for $x in path;,
$y in paths,

Vi: for $x in pathy, $z in paths
groupby $x,$z return {a) $x,$z(/a)

$z in paths
groupby $x, $y, $z Va: for $y in paths
return E($x,$y,$z) groupby $y return (b) $y(/b)

3.3 Phase 3: Equivalence Check

Since the views may be under-conditioned, the candidate rewrit-
ing may contain the bindings of the query, but is not guaranteed
to be equivalent. The equivalence check is similar to the relational
case [19]: First, unfold the views in the rewriting (for us, this means
substituting for each inverse function the pattern corresponding to
the same view block) so that the rewriting is expressed in terms
of source documents. Next, check equivalence between) and the
unfolding of RW. The equivalence check was handled in detail in
[9], where it was employed in minimization of NEXT queries. Its
key point is that equivalence of nested blocks has to be judged in
the context of their ancestor blocks, since ancestor blocks provide
the bindings for the variables which are free in descendant blocks.

EXAMPLE 3.6. The unfolding of RW is shown in Figure 9.

3.4 Details and Formal Guarantees

The pseudocode of algorithm NEXTREWRITE is shown in Fig-
ures 10 and 11. For a given query Q and view V, EXPANDALL-
BLOCKS visits QQ’s tree of groupby blocks in a top-down manner,
invoking EXPANDBLOCK at each block B?.

p UNFOLD(RW,V) P Q

UNFOLD(RW.V) Q
P Py

doc(DBLP.xml) — [doc(DBLP.xml)

paper($p4) T paper ($p)

A)
review($rd) author($ad) review($r) autho\r(sa)

UNFOLD(RW.Y) , 5 Q
P2 P2

—— doc(DBLP.xml H
doc(DBLP.xml) 4 () N

paper($ps) 4 PR

L author($at) "~ review(sr1)

L

review($r5) author($a5)

Figure 9: Sample mapping used in checking equivalence of @)
with UNFOLD(RW, V)

Given a query block B9 with pattern P? and a view block B"
with pattern PV, EXPANDBLOCK searches for a subset of P?’s
variables to which PV provides an alternate access path. They are
detected via mappings (m;, in line 4). Once a view access path is
found, it is recorded by calling procedure ADDVIEWACCESS (line
5). The search continues recursively for access paths provided by
blocks nested within BY (lines 6-7). To avoid redundant compu-
tation of mappings from B" during the visit of nested blocks, my,
is passed as argument.

Detecting access paths within the query’s ancestor context. Since
a nested query block B? may have free variables correlating it with
its ancestors, an access path may become possible only once we
consider the extra constraints on the bindings of free variables, as
provided by the patterns of B%’s ancestors. Procedure EXPAND-
BLOCK takes this into account by mapping the view pattern PV
not just into P2, but into the merged pattern M. M is obtained
by unioning together the edges and equalities of P< with those of
its ancestor patterns, and inferring any additional implied equalities
according to procedure CONGRUENCECLOSURE (lines 2-3).

Expanding P® with view access. Whenever PV provides an
access path to variables in P¥, ADDVIEWACCESS expands P%
with a copy of the navigation pattern corresponding to the inverse
of the view return function, Inv(f) (line 2). Inv(f) may contain
variables v which occur in PY or in the ancestor patterns of PY
and are thus already mapped by m,. These are the variables in
domain(m,) N Inv(f) referred to in line 3. The image under m,
of each such v identifies a query variable mp(v) with an access
path through v. This is recorded in line 4 by the value-equality
between mp(v) and v, the access path variable introduced in line
2 to retrieve the v bindings for this access path.

EXAMPLE 3.7. The mapping m1 in Snapshot (a) witnesses
the access path to $r € PlQ through the inverse of f . Snapshot
(b) shows the extension of PlQ with a copy of Inv(fY). Line 3
of ADDVIEWACCESS computes {$r} = domain(m1) N Inv(f}).
Line 4 adds the equality between the copy of variable $r (which is
$r2) and ma ($r) (which is $r € PR).

Correlating view access paths. The argument m,. of ADDVIEWAC-
CESS is used to handle free root variables $v, in Inv(f). These
variables also occur in the inverse function Inv(f,) of some ances-
tor block BY of BY, thus correlating Inv(f) and Inv(f.). By the
time ADDVIEWACCESS is invoked for BV, it has already executed
on BY and has introduced a copy of $v, into B . Upon reaching
BV, ADDVIEWACCESS must preserve the correlation by using the
same copy of $v,. To this end, it consults the mapping m,. which
records the correspondence between correlation variables in Inv(f)
and their copies in Inv(fa) (lines 5-6). m, is then extended to
m,. (line 7) to record the new correspondences between correlation
variables in Inv(f) which appear in nested blocks of B (line 8).

NEXTREWRITE(Q, V)
D> Phase 1: expand QQ with alternate view access paths:
1 foreachV ¢V
2 do let B2, BV be the root groupby blocks of Q, V/
3 X = EXPANDALLBLOCKS(B®, BY)
D> Phase 2: construct candidate rewriting using only view access:
4 RW = KEEPVIEWSONLY(X, V)
D> Phase 3: check if candidate rewriting is equivalent to Q:
5 if UNFOLD(RW, V) is not equivalent to Q
6 then report “no rewriting exists”
7 else minimize redundant access paths in RW and return result

EXPANDALLBLOCKS(B®, BY)

1 EXPANDBLOCK(B®, BY ,mgy, my)

2 for each child BY of BQ

3 do EXPANDALLBLOCKS(BE, BY)

> mg. empty mapping

EXPANDBLOCK(B®, BV, m,, m..)

> my: mapping of pattern vars from B Vs ancestors into B9
> .- mapping of inverse function vars from BY ’s ancestors

into access path vars in expansion of B? and ancestors
let P9, PV be the patterns of BQ, BV
let M < denote the pattern obtained by merging P?

with the patterns of all ancestor blocks of BY
CONGRUENCECLOSURE(M @)
for each mapping m;) : PV — M@ which extends mp
do m). = ADDVIEWACCESS(P?, BV m! m;)
for each child BY of BY
do EXPANDBLOCK(B?, BY ,m{,, m!.)

CONGRUENCECLOSURE(P®)

o =

[N e NNV, I SOV}

ADDVIEWACCESS(P?, BY /mp, m;)

> adds to PR the inverse of BY ’s return function
1 let f be the return function of BV, and
Inv(f) its inverse (Inv(f) is a tree pattern)
2 add to P a copy of the edges in Inv(f)
(for each variable v € vars(Inv(f)) denote its copy with v.)
D> record equality between query variables
> and their corresponding view access path variables:
3 for each v € vars(Inv(f)) N domain(myp),
4 do add to P? the value-equality my(v)eq ve
> link free variables in the copy of Inv(f) to
> their bound occurrence in ancestor (given in m..):
for each v € vars(Inv(f)) N domain(m),
do replace v. with m,(v) in P
construct extension m; of m,- that maps each
v € vars(Inv(f)) \ domain(m) into v,
8 return m/.

BNl V)

CONGRUENCECLOSURE(P) [> side-effects P

extend P with the symmetric, transitive closure of its equalities
for each value-equality v eq w € P and each child v’ of v
if » has no child v’ with v’eq ' then
add a copy of the subtree rooted at v’ as a child of u
add a value-equality between each copied variable and its copy
analogous to lines 2-5 for id-equalities v is u € P

AN RN =

Figure 10: Phase 1 of Algorithm NEXTREWRITE

EXAMPLE 3.8. In Figure 7, Snapshot (a) m, = my, and
Inv(fY) has no free variables. According to line 7 in procedure
ADDVIEWACCESS, m;. = {$f — $f2, 87 — $r2, $as — $as2}
is constructed to record the actual names of the variables intro-

duced as copies of those inTnv(f)). In Snapshot (b) ADDVIEWACCESS

is called with m/!.. ADDVIEWACCESS now extends P with a copy
of Inv(fY), vielding the pattern from Snapshot (c). Notice that this

KEEPVIEWSONLY(X, V)

1 for each block BX in query X, let P be its pattern
2 Replace PX with the restricted pattern PEW which
keeps from P only variables reachable along paths of
/- and //- edges from roots mentioning view names.
Keep the edges and equalities involving them.
3 Drop from BX s groupby list all variables which are:
— uniquely determined by other variables in the list
(due to parent-child relationship), and
—do not appear free in nested blocks
4 Replace the remaining variables v in B ’s groupby list
with variables u € PEW such that:

5 vequ € pX ;

6 if v is a groupby-id variable, u was introduced during Phase 1
as the correspondent of a view’s groupby-id variable;

7 if v is a groupby-value variable, u was introduced due to

either a view’s groupby-value or groupby-id variable;
8 if not all groupby variables can be replaced,
then report “no rewriting found”
9 if an ordered rewriting is sought and
no ordering of the view pattern roots
preserves the pre-replacement ordering of groupby variables
then report “no ordered rewriting found”

Figure 11: Phase 2 of Algorithm NEXTREWRITE

copy is added below the $as2 variable due to lines 5-6 in AD-
DVIEWACCESS; m,. has recorded that $ass is the copy of the oc-
currence of $as in Inv(f"), and the same copy is consistently used
for the occurrence of $as in Inv(f3).

THEOREM 3.1. Let the input to NEXTREWRITE be a NEXT
query Q and a set V of invertible NEXT views.

1. (Soundness) The NEXT query RW output by NEXTREWRITE
(if any) is an equivalent rewriting of Q.

2. (Unordered Completeness) If Q’s binding stage Q"™ has
some equivalent unordered NEXT rewriting using only V,
then NEXTREWRITE is guaranteed to find an equivalent rewrit-
ing RW of Q using only V.

It should not be surprising that we cannot guarantee completeness
for ordered rewritings: in this case, even the equivalence of ordered
NEXT queries is undecidable (this is a corollary of results in [29]).
Our approach performs a best effort in that case, remaining sound
(the equivalence check is now only sufficient, not necessary) and in
practice still finding ordered rewritings in many cases.

3.5 Finding Mappings Efficiently

We specify next how the algorithm NEXTREWRITING finds map-
pings. This is the most crucial step for the performance of the algo-
rithm since (i) it is expensive (indeed, it is the only step that is not
of polynomial-time complexity) and (ii) is invoked repeatedly.

We first present the prior work on finding mappings. For re-
lational conjunctive queries, checking the existence of a mapping
from V to @ is NP-complete in the number of variables of V' [6].
The NP-hardness lower bound transfers to finding mappings from
a NEXT pattern PV into a NEXT pattern P2 .* However, checking

*Sketch of Proof: Given a relational mapping problem, assume that
the relations are encoded in XML using, for instance, the default
encoding of [5]. Then encode the relational conjunctive queries
as single-block (i.e. non-nested) NEXT queries over the default
encoding. It follows that finding NEXT mappings is as hard as
finding conjunctive query mappings.

c($x6) d($x7

)
a($x2) a($x§) b($x4)

Figure 12: A NEXT Pattern ($z5 is the groupby-value variable)

containment mappings between simple tree patterns without value
equalities used in prior XPath works is performed in polynomial
time in the size of the source pattern [2, 26, 22, 16]. Notice that the
differences between simple tree patterns and NEXT patterns are (i)
the number of distinguished variables, i.e., variables that are pro-
jected in the output (tree patterns have only one, NEXT patterns
have as many as there are groupby variables) and (ii) the number of
variable equalities (tree patterns have none). It is therefore natural
to seek an algorithm that runs in PTIME on tree patterns (no equal-
ities, one distinguished variable) and whose performance degrades
only with increasing number of groupby variables and/or equalities.

We start by analyzing the complexity of computing mappings
from a pattern P. For each (node and corresponding) variable v €
P, define gVars(v) to be the set of grouping variables among the
proper descendants of v in P. For the example pattern in Figure 12,
assuming that $z 5 is the only groupby-value variable, gVars($27) =
{$25}. Also, let e(v) be all of v’s proper descendants in P which
are involved (directly or transitively) in equalities with variables
who are not v’s descendants. For instance, e($x7) = {$23, $25}.
The symmetric, transitive closure of the equality conditions in P
partitions its variables into equality equivalence classes. Given
a set of variables V denote with #eqCls()) the number of dis-
tinct equality equivalence classes represented in V. For instance,
#eqCls({$x7, $23,$25}) = 2, since $23 and $z5 are in the same
equivalence class.

Define the width of v as

#eqCls(gVars(v)),

. if v is root
width(v) = { #eqCls({v} U gVars(v) U e(v)),

otherwise

and define width(P) as the maximum width of a variable in P. For
example, width($27) = 2 and width($x8) = #eqCls({$x5}) = 1.

THEOREM 3.2. Let PV, P? be NEXT patterns. Then checking
the existence of a mapping m : P — P® is NP-complete in
width(P"") and polynomial in the size of P<.

This result follows from the fact that widrh(P) is related to the tree
width [8, 15] of P when regarded as a graph whose edges consist
of the /-, //-edges and the equalities.

For queries with bounded tree width, previous work [8, 15] presents
polynomial-time evaluation algorithms corresponding to the gen-
eralization of Yannakakis’ algorithm [1] from acyclic queries to
bounded-tree-width queries. Our algorithm for computing map-
pings adapts these ideas. It is based on two key ideas. First, instead
of computing mappings from PV to P one-at-a-time, we take
a set-at-a-time approach by interpreting PV as a query evaluated
over the tree structure of P?.> PV is compiled into a query exe-
cution plan in which we adapt from Yannakakis’ algorithm [1] the
idea of pushing projections before the join in the bottom-up evalu-
ation of the plan. Our experiments show that the plan compilation
and subsequent optimization require negligible time. In addition,

5This perspective stems from relational theory, in which mappings
(homomorphisms) from a query V' to a query () are computed by
regarding () as a symbolic database and evaluating V' over it [6].

. 7 2% XT :

=5
o

X, = X
parents, - 5= Xg parentse s
I X X, | X X
%] % l l Ja%| %7
X,= X — k= — —
—_— =%, _ XX X X x| X
X Xs X=X %] %6 _3_1_1 _ _5I_L
6 6 X f
arents arents arents, arents, arents,
p e, x 1> p e, xp—>x. P d,xg>x, p d, X 4>x, p d,x5->x,
X % X < | %
sean, >, sean 5, soang >y scany >x soan, 5y

Figure 13: Algebraic plan for pattern in Figure 12

this time is not critical as these tasks are performed off-line, before
query arrival.

The operators used in the mapping computation plan output flat
relational tables. We use relational join, selection, and projection
operators, as well as two special operators that are evaluated over
the structure of P%. First, scan;—, () returns the nodes in Pe
whose label is I. The result is a set of unary tuples whose attribute
is called v. Second, parents; ., (R) takes as input a set of tuples
R and extends each of them with a new attribute p. Given a tuple
r with r.c = n, where n is a node of PQ, the new value r.p is the
[-labeled parent n’ of n, assuming n’ and n are connected via an /-
edge in P?. If no such parent exists, the tuple is dropped. Similarly
for ancestors; 4., d is the attribute holding the descendant and
a is the extension attribute holding an ancestor with label [.

The plan for a pattern P is obtained by using scan operators for
the leaves of P, and join operators for its internal nodes. Moreover,
for each operator o corresponding to a pattern variable v, add on top
of o a projection operator whose projection list contains precisely
the variables contributing to width(v).

EXAMPLE 3.9. We illustrate the translation into a plan on
the pattern P from Figure 12. Given a pattern P, the plan shown
in Figure 13 finds all images of $x5 under mappings from P into
P®. Each plan operator o is adorned with a schema S, whose
overlined attributes A specify the projection list. The invariant
maintained by the plan is that the sub-plan rooted at o computes
the images of the A variables under all partial mappings of the S
variables into P®. For instance, the topmost join operator finds
the images of xs under the mappings of all eight variables of P.

The join operators enforce the equality conditions, as well as
the structural constraint requiring two variables to have the same
parent variable. A condition x = y evaluates to true on two tuples
t1 (from the left join operand) and t, (from the right join operand) if
t1.x is equal to t,.y in P2 equality may be transitively implied by
P equality conditions. The reader can check that in Figure 13,
the number of overlined attributes for each operator o corresponds
to the width of v.

THEOREM 3.3. Let PV, P% be NEXT patterns. Then the eval-
uation over P® of the plan for PV produces all mappings m :
PV — P9 and runs in time polynomial in the size of P® and
exponential in width(PV").

Since pure tree patterns contain no equalities and only one distin-
guished variable (corresponding in NEXT to one groupby-id vari-
able), simple tree patterns have width 1, and the result on polynomial-
time computability of tree pattern mappings [2] follows as a corol-
lary of Theorem 3.2.

4. BEYOND NEXT REWRITING

We now extend the applicability of the NEXT rewriting algo-
rithm to arbitrary XQueries. This involves (i) extending the NEXT
notation to accommodate arbitrary XQueries and (ii) extending the
rewriting algorithm accordingly. We sketch the required extensions
in this section. We preserve the approach used for NEXT rewrit-
ing: represent queries using patterns and find view access paths by
matching the view patterns against the query patterns.

Extending NEXT: NEXT+. The solution we adopt for (i) is to
abstract the non-NEXT subexpressions as uninterpreted functions,
i.e. functions about whose semantics we make no assumptions.
This allows us to uniformly capture all XQuery primitives which
are ruled out by the OptXQuery syntax: aggregate functions, built-
in predicates other than equality, universal quantification, negation,
disjunction, user-defined functions, etc. Each of these are treated as
some function F' whose arguments are in turn NEXT expressions
enriched with uninterpreted function calls. We call this notation
NEXT+. Its syntax corresponds to extending the NEXT grammar
in Figure 4 with the productions

FC == F(X0,...,X0))
XQ == forVariin (FC1 | Pathy),. .., Varyin (FCy | Pathy,)
(where CList)? groupby FC1, ..., FC}, return FC”
Cond ::= FC // where the function F is (coercible to) boolean

NEXT+ contains NEXT in the particular case when only paths ap-
pear in the in clauses, FCY, ..., FC}, are calls of the identity func-
tion with variables as arguments, and the function in FC” consists
only of element construction and concatenation. The NEXT+ no-
tation features additional nested block occurrences, where blocks
are now not only by groupby blocks, but also by the arguments
of function calls. For instance, in the above production for X@,,
the arguments of FCy,...,FCy,FC’1,...,FC’y,FC” are func-
tion blocks nested within the block given by the outer for ~-where
—groupby —return expression. Just like NEXT blocks, nested
NEXT+ blocks may have free variables bound in their ancestor
blocks. For example, consider the following query which returns
the reviews of multi-author papers.

for $p in $doc/ /paper, $r in $p/review
where count($p/author) > 1 return $r

Normalization into NEXT+ yields two blocks B, Ba:

for $pin $doc//paper, $rin $p/review

for $ain $ th roupby [$a] return $
B; ¢ where F(¢ p/author groupby (fal 2

B
groupby [$p], [$r] return $r ’

where F' is the boolean function AN. count(N) > 1 (in lambda

notation).

Extending NEXTREWRITE. Since algorithm NEXTREWRITE op-
erates on nested blocks regardless of how these were created dur-
ing normalization, only minimal changes are required. We still use
mappings to detect access paths, still considering ancestor blocks
to provide the context for the free variables. However, we must
extend mappings to account for function calls. Our treating func-
tions as uninterpreted requires extending Definition 3.1 such that
function calls F'(a1, ..., ar) match only against calls of the same
function F'(b1, ..., bn), and only if, recursively, a; is equivalent to
b; for each 4. In our example, the algorithm generates the following
candidate rewriting using view V' from Example 1.1:

for $f in document (V') / feedback, $rin $ f /review
where count($f/authors/author) > 1 groupby [$r] return $r

Clearly, the more of the query is abstracted to functions, the less
mappings will be discovered, resulting in fewer rewriting opportu-
nities. We take particular care to maximize these opportunities by
abstracting only the truly non-NEXT query primitives.

The advantage of our approach is twofold. First, we do not re-
ject non-NEXT queries flat out, performing a best rewriting effort
instead. Our approach combines the benefits of complete rewriting
feasible for NEXT and the easy-to-engineer but incomplete tech-
niques based on isomorphically matching common sub-expressions
between query and view [12]. Second (and beyond the scope of
this paper), we enable an extensible rewriting module, which can
be incrementally enhanced by adding partial information about the
uninterpreted functions (thus interpreting them partially).

5. EXPERIMENTAL EVALUATION

As shown in Section 3.5, the complexity of our algorithm is de-
termined by the pattern width, a measure which is typically much
smaller than the query size. Our experiments show that other fac-
tors such as query size and number of views do not affect the rewrit-
ing performance significantly, allowing algorithm NEXTREWRITE
to scale up to large numbers of views and large queries.

We implemented a generator of synthetic queries and views which
enables us to control the following parameters: the nesting depth
d of the query, the breadth b (see below) of the patterns in each
groupby block, and the number of views.

8’ (PO $e180b Q)
Bt (PO, i8cr'Scb o)
d xml) doc(input.xml) inputaml) ‘pla le — (entry)
| | | $cq12,$cb,
m | m m, Bl+1
a/ 01\($c1) _f‘(\c o . a Cold), (/entry)
doc(inpul.xml)‘:‘ doc(input.xml) doc(input.xml) ‘:i fl?»l - <entry>
| ' | | H $Cl’,$Cb”
Mg h M 141 m :' Bl+2
a/ 01\(15017) a/ \c z _a ¢ plscb) (/entry)

Figure 14: General form of synthetic queries and views

The queries. For a given value of d and b, the generator outputs
a query Qq,p as follows. Qg has d groupby blocks BlQ e B?,

such that Bﬁrl is nested within BX for each [€ [1...d — 1]. The

patterns PlQ and Pﬁl of blocks BlQ, respectively ij)H are shown
in Figure 14, using the NEXT notation. They consist of b basic pat-
terns, where the jth basic pattern navigates from the document root
to an m; child, from there to an a and a c; child. In the figure, we
only show the variable $¢; bound to this latter child. We call the
breadth of a block the number of basic patterns it contains. The ba-
sic patterns are chained via value-equalities between the variables
binding to a elements. Variables $¢q and $c;, are the groupby-value
variables of block BlQ , and are also output by the return function
le. These variables also appear as free variables in block BﬁH,
which performs a value-equality join between them and its own
groupby-value variables, $c; and $c;,.

The views. We note that the detection of views which are irrele-
vant to the query can be done very fast, by establishing the absence
of mappings from view into query. This can be detected early, as
soon as some internal operator of the view pattern plan returns an
empty answer. Hence an evaluation of how the algorithm scales
with the number of irrelevant views would produce excellent re-

|[Ed=8 b=8 0d=8 b=16 Wd=16 b=8 d=16 b=16|

1400

1200 -

1000 -

800 -

600 -

400 4

rewriting time (ms)

200 4

1 2 4 8 16 32 64 128
number of views

Figure 15: Rewriting times for increasing number of views.

sults but would not test the real challenges. We avoid irrelevant
views by generating views exclusively from subpatterns of Q4.

We start with a view that is identical to the query, and we recur-
sively split it into smaller views by alternatively halving its depth
(the depth of the groupby tree) and breadth (the number of ba-
sic patterns in each groupby block). At each recursive step, the
pattern of the views at each level corresponds to a subpattern of the
original query. Towards a realistic scenario, we force the patterns
of the views to overlap: when obtaining two new blocks By and
B> by halving a view block on its breadth (B is the left half), we
extend B1’s pattern with a copy of the leftmost basic pattern of Ba.

By construction of the views, the query always has a rewriting.

The platform. Our experiments were all run on a Pentium 4
2.80GHz running Windows XP with 1GB RAM. The algorithm
was implemented in Java.

The measurements. Our preliminary experiments show very
encouraging results. Figure 15 shows the results of running ex-
periments on patterns as described above for a number of views
between 1 and 128. We display the results for four configurations,
corresponding to the queries Qs s, (Js,16, Q16,8, Q16,16. In partic-
ular, Q16,16 contains 16 nested blocks, each of whose patterns con-
tains 16 value-equality conditions and binds 48 variables of which
2 are groupby-value variables. In each configuration, we measure
the rewriting time when increasing the number of views by succes-
sive splits as described above. For 128 views, the test runs in 594
ms for a query with 16 nested levels and a breadth of 8 basic pat-
terns per level. For the query of depth 16 and breadth 16 and the
same number of views, we measure a rewriting time of 1250 ms.

Conclusions. While we intend to conduct experiments on real-
life queries and views (the challenge there is to collect query and
view specimens actually deployed in applications), our preliminary
experiments are quite encouraging. They show that the algorithm
performs well for large queries and large numbers of overlapping
views. The reasons for this performance is the exploitation of the
underlying tree structure for quickly finding mappings. By not con-
sidering irrelevant views, we generated the worst case scenario for
our algorithm in order to “stress-test” it. In practice, we expect
much better behavior, as many views will be irrelevant and ruled
out immediately.

6. RELATED WORK

In XQuery stream processing, [12] identifies common XQuery
subexpressions and memoizes in a cache to avoid redundant eval-
vation. This can be seen as rewriting the original XQuery using
the views in the cache. The test for pattern equivalence is based

on expression isomorphism and thus trades rewriting opportunities
for engineering simplicity. As we discussed, one can maximize
rewriting opportunities within the NEXT/OptXQuery set, while re-
taining syntactic isomorphism for NEXT+/XQuery. NEXT rewrit-
ing allows us to match query and view navigation across XPath
sub-expressions, regardless of whether it appears in the for or the
where clause of a query, or as distinct-values argument. None
of these matches are supported by pure syntactic isomorphism.

[3, 33] rewrite only the XPath subexpressions of XQueries us-
ing materialized XPath indexes and thus do not face the problems
caused by nesting, equalities, XML construction in the view output,
all of which we address in this paper.

The type of nesting we address here corresponds in the SQL re-
lational case to the illegal nesting in the SELECT clause, and was
therefore not a focus of SQL optimization. While this nesting is al-
lowed in OQL, the development of complete algorithms for rewrit-
ing OQL queries using views is precluded by the fact that checking
equivalence of nested OQL queries is an open problem even for
the idealized conjunctive OQL sublanguage of [20]. We are aware
of only one particular case of view-based OQL rewriting (which
however does not involve nesting), namely rewriting OQL paths
using path indexes [28, 18]. Note that other kinds of XQuery or
OQL nesting (within the FOR and WHERE clauses) are easier to
deal with, as it is in most cases translated away using normalization
rules such as in Agora [21] (adopted in our work as well), and the
normalization from [9] for moving nested some loops from the
where clause into the for clause (see NEXT().

[25] rewrites semistructured queries using semistructured views
in the context of the semistructured OEM data model. The copy
semantics of XQuery’s construction operators rule out the use of
database id’s for assembling the view data into the query result, as
done in [25].

In the context of data integration, [34] rewrites XQueries un-
der open-world, “certain answer” semantics using source-to-target
constraints. The work does not address equivalent rewritings in a
closed world, which is our setting. The two settings requires very
different algorithms even in the relational case.

In XML publishing, the Agora [21] and MARS [10] systems
both rewrite XQueries using publishing views, but indirectly via
a reduction to rewriting relational queries using relational views
(Agora) or constraints (MARS). Consequently, they do not address
list and bag semantics. The strength of the two approaches is to al-
low mixing of relational and XML models by reducing the XQuery
treatment to a relational one. A benefit of our NEXT-based ap-
proach is that, by exploiting the underlying tree pattern structure,
we achieve faster algorithms for pattern matching. The relational
reduction misses this opportunity. Moreover, Agora and MARS
first decorrelate queries into unnested queries. Each unnested query
is then individually rewritten and evaluated using relational tech-
niques and the results are put together using an outer join. Hence
the solution forces the processor to use decorrelation and outer
joins at the physical level. In contrast, we provide a tool which
inputs XQuery and outputs an XQuery rewriting, thus imposing
no requirements on the underlying engine, with obvious benefits
of portability and of allowing the cost-based optimizer to subse-
quently choose a physical level plan.

The equivalence checker is a basic building block for any rewrit-
ing algorithm. There is a significant body of work on equivalence of
XPath (tree patterns) ([22, 2, 26, 11, 32, 23, 14]). The only work we
are aware of on equivalence of nested XML queries was reported
in [9] and adopted in this paper. While not complete for checking
equivalence of entire queries, the algorithm of [9] is complete for
checking equivalence of binding stages, which is ultimately what

we want to rewrite. [13] completely solves checking containment
for a class of nested XML queries subsumed by ours. However, it
addresses a containment flavor based on homomorphic embedding
of the resulting XML trees. Unfortunately, equivalence is not re-
ducible to this kind of containment (two queries may be contained
in each other without being equivalent). Moreover, the test for this
containment flavor has inherently higher complexity (IT5-complete
if applied to NEXT patterns) than for the binding stage containment
we use (NP-complete in the pattern width). One may wonder how
we check binding stage equivalence under bag semantics, given that
containment under bag semantics is open for conjunctive queries
(but IT5-hard) and undecidable for unions thereof [7]. Fortunately,
in XML nodes have unique identities, and for a NEXT query, a bag
of element values corresponds to a set of their identities, which al-
lows us to reduce the test to set containment of tuples consisting of
values and identities. Finally, we do not inherit the open problem of
checking equivalence for OQL [20]. As shown in [20], equivalence
and containment are not inter-reducible, except for OQL queries
yielding VERSO relations [1]. These are essentially obtained as
the result of grouping, and therefore are produced by the bind stage
of NEXT queries.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we present a sound algorithm for rewriting using
views for XQuery. The algorithm is complete for the large sub-
language OptXQuery, when unordered rewritings are of interest.
We obtain good performance by exploiting the tree-like structure
of OptXQuery navigation patterns.

Our rewriting algorithm was enabled by the integration of a proven
relational approach (use a pattern-based representation of queries
and views to detect subsumed query sub-expressions via pattern
mappings) with solutions for the special XQuery challenges such
as nested return clauses, two types of equalities, unrestricted mix
of loops with set, bag and list semantics, and the copy semantics of
XML construction. None of these challenges arose in prior XPath
rewriting work.

A note about the copy semantics: our example shows that de-
spite the fact that XQuery loses node identities when it constructs
the result, there are interesting rewriting opportunities, which our
algorithm discovers. Given (XQuery-inexpressible) views which
preserve node identities, even more such opportunities would be
exposed. A simple extension of our algorithm would easily ex-
ploit these opportunities: during query expansion (Phase 1), con-
nect query and view variables with id-equality edges (as opposed
to only value-equality in the current form). We can show that, with
this modification, the previous soundness and completeness guar-
antees apply to id-preserving views.

Note that our algorithm yields a single rewriting, obtained by

finding all (possibly redundant) alternate data accesses through views.

This is already sufficient in certain scenarios, such as privacy-pre-
serving publishing (where one only cares about the existence of a
rewriting), or in distributed processing in which evaluating a redun-
dant query over the local cache is likely preferable to sending even
non-redundant queries to remote sites. We are working on inte-
grating the rewriting algorithm with the NEXT query minimization
techniques of [9] and the work on cost-based pruning during mini-
mization described in the MARS system [10].

Finally, we are working on extending the rewriting in the pres-
ence of XML Schema and DTD constraints, which create even
more rewriting opportunities. Our NEXT-based rewriting approach
is compatible with this extension, exploiting pattern mappings to
find the query sub-expressions affected by constraints.

8. REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava.
Minimization of tree pattern queries. In SIGMOD, 2001.

[3] A.Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A
framework for using materialized xpath views in xml query
processing. In VLDB, 2004.

[4] K. Beyer, D. Chamberlin, L. Colby, F. Ozcan, H. Pirahesh, and
Y. Xu. Extending XQuery for analytics. In SIGMOD, 2005.

[5] M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S.
Subramanian. XPERANTO: Middleware For Publishing
Object-Relational Data as XML Documents. In VLDB, 2000.

[6] A. Chandra and P. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, 1977.

[7]1 S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive
queries. In PODS, 1993.

[8] C. Chekuri and A. Rajaraman. Conjunctive query containment
revisited. In ICDT, 1997.

[9] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT logical
framework for XQuery. In VLDB, 2004.

[10] A. Deutsch and V. Tannen. MARS: A system for publishing XML
from mixed and redundant storage. In VLDB, 2003.

[11] A. Deutsch and V. Tannen. Reformulation of xml queries and
constraints. In /CDT, 2003.

[12] Y. Diao, D. Florescu, D. Kossmann, M. Carey, M. Franklin.
Memoization in a streaming xquery processor. In XSym 2004.

[13] X.Dong, A. Y. Halevy, and I. Tatarinov. Containment of nested XML
queries. In VLDB, 2004.

[14] S. Flesca, F. Furfaro, and E. Masciari. On the minimization of XPath
queries. In VLDB, 2003.

[15] J. Flum, M. Frick, and M. Grohe. Query evaluation via
tree-decompositions. In /CDT 2001.

[16] G. Gottlob and C. Koch. The complexity of XPath query evaluation.
In PODS, 2003.

[17] A.Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270-294, 2001.

[18] A.Kemper and G. Moerkotte. Advanced query processing in object
bases using access support relations. In VLDB, 1990.

[19] A.Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering
queries using views. In PODS, 1995.

[20] A.Y.Levy and D. Suciu. Deciding containment for queries with
complex objects. In PODS, 1997.

[21] I Manolescu, D. Florescu, and D. Kossman. Answering XML
Queries on Heterogeneous Data Sources. In VLDB, 2001.

[22] G. Miklau and D. Suciu. Containment and equivalence for an XPath
fragment. In PODS, 2002.

[23] F. Neven and T. Schwentick. XPath containment in the presence of
disjunction, dtds and variables. In /CDT, 2003.

[24] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object
exchange across heterogenous information sources. In /ICDE, 1995.

[25] Y. Papakonstantinou and V. Vassalos. Query rewriting for
semistructured data. In SIGMOD, 1999.

[26] P. Ramanan. Efficient algorithms for minimizing tree pattern queries.
In SIGMOD, 2002.

[27] S.Rizvi, A. Mendelzon, S. Sudarshan, P. Roy. Query Rewriting
Techniques for Fine-Grained Access Control. In SIGMOD 2004.

[28] P. Valduriez. Join indices. ACM TODS, 12(2):218-452, June 1987.

[29] S. Vansummeren Deciding Well-Definedness of XQuery Fragments.
In PODS 2005.

[30] W3C. XML Query Use Cases . Available from
http://www.w3.org/TR/xmlquery-use-cases/.

[31] W3C. XQuery: A query Language for XML. Available from
http://www.w3.org/TR/xquery.

[32] P. T. Wood. Containment for XPath fragments under DTD
constraints. In /ICDT, 2003.

[33] W. Xu and Z. M. Ozsoyoglu. Rewriting XPath Queries Using
Materialized Views. In VLDB, 2005.

[34] C. Yu and L. Popa. Constraint-based XML query rewriting for data
integration. In SIGMOD, 2004.

