
Querying Contract Databases Based on Temporal Behavior

Elio Damaggio
UC San Diego

elio@cs.ucsd.edu

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Dayou Zhou
UC San Diego

dzhou@cs.ucsd.edu

ABSTRACT
Considering a broad definition for service contracts (beyond web
services and software, e.g. airline tickets and insurance policies),
we tackle the challenges of building a high performance broker in
which contracts are both specified and queried through their tem-
poral behavior. The temporal dimension, in conjunction with tra-
ditional relational attributes, enables our system to better address
difficulties arising from the great deal of information regarding the
temporal interaction of the various events cited in contracts (e.g.
"No refunds are allowed after a reschedule of the flight, which can
be requested only before any flight leg has been used"). On the
other hand, querying large repositories of temporal specifications
poses an interesting indexing challenge. In this paper, we intro-
duce two distinct and complementary indexing techniques that en-
able our system to scale the evaluation of a novel and theoretically
sound notion of permission of a temporal query by a service con-
tract. Our notion of permission is inspired by previous work on
model checking but, given the specific characteristic of our prob-
lem, does not reduce to it. We evaluate experimentally our imple-
mentation, showing that it scales well with both the number and the
complexity of the contracts.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data Model;
J.1 [Computer Applications]: Administraitive Data Processing—
Business, Law

General Terms
Algorithms, Perfomance, Theory

Keywords
temporal behavior, contracts, Linear Temporal Logic, LTL, index-
ing, Büchi automata

1. INTRODUCTION
Service contracts are seldom completely represented by a set of

predefined attributes and as such are usually modeled only partially
in IT systems. As an example, consider the market of airfares. Ev-
ery plane ticket is actually a complex contract with dozens of con-
ditions regarding validity, refundability and changeability, among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

others. Some fixed categories exist (e.g. economy tickets, busi-
ness, first class), but they do not express all the subtleties of the
contracts that the customers are required to sign. Any non-standard
travel arrangement requires sifting through the full text of the con-
tracts of the fares returned by such brokers as Expedia, Orbitz and
Travelocity, or asking an expert travel agent. Generally, analogous
characteristics are found in service markets where there is no ne-
gotiation of the contracts, but that present many possible choices in
direct competition (e.g. airfares, insurances, warranties).

EXAMPLE 1. Over 100 airlines operate in the US market [26],
each of them offering around 20 different fares [27], [24]. Fare
rules specify a great deal of temporal conditions such as (from the
United Airlines Fare Contract [1]): ‘1) Passenger may change the
routing and/or the ultimate destination [...] provided that, after
transportation has commenced, a one-way ticket will not be con-
verted into a round-trip, circle-trip, or openjaw trip ticket.’ Note,
also, that voluntary rerouting might be possible only by reissuing a
ticket with a different ‘booking code’ which in turn has to abide to
additional restrictions such as minimum stays and advanced pur-
chase requirements [24].

In this work, we envision a contract brokering system that, in ad-
dition to standard relational attributes, allows contracts to be spec-
ified and queried by their temporal behavior. For illustration pur-
poses, we introduce now a running example in the airfares scenario.
Airlines, as contract providers, register all their fares on our broker-
ing system. Each airfare specifies its temporal aspects, in addition
to the usual relational attributes (e.g. baggage conditions, prices).
These aspects involve how tickets are changed (if and when it is
possible), how the customers can be refunded and so on. A pos-
sible query could look for: the cheapest fare on 10/19/2010 from
San Diego to New York, that allows a partial ticket refund or a date
change after the first leg has been missed. In order to answer this
query, our broker would first retrieve the list of fares available from
San Diego to New York, along with their prices, using a standard
DBMS. It would then use the temporal specifications to filter the
fares that do not satisfy the temporal portion of the query (e.g. ‘...
that allows a date change even in the case of a missed flight’). In
this work, we focus on the temporal aspect of our system.

EXAMPLE 2. Assume that all the airfares ‘from San Diego to
New York on 10/19/2010’ returned by the DBMS fall into three cat-
egories of tickets (e.g. United Business, AA Economy for Platinum
Clients) that differ in their policies regarding refunds and change-
ability. Their contract restrictions are the following:

Ticket A 1. No refunds are allowed after date changes
2. Unlimited date changes

Ticket B 1. Refunds always allowed
2. Date changes only before the scheduled departure

397

Ticket C 1. No refunds are allowed
2. Only one date change is allowed
3. Date changes only before the scheduled departure

Our system has to identify which of these contracts satisfy the tem-
poral portion of the query: ‘allows a partial ticket refund or a date
change after the first leg has been missed’. Intuitively, the system
should return Ticket A (because it would allow a reschedule) and
Ticket B (that would allow a refund). It should not return Ticket
C because it does not allow any refund nor rescheduling after a
missed flight.

Our design is guided by the following requirements:
i) Specifications and queries need to be expressive enough to cap-
ture realistic temporal behavior,
ii) The interface between customers and providers should be com-
pact and reasonably stable,
iii) Published contract specifications should not require revisions if
a contract with a different policy is published,
iv) Our representation for contracts and queries should declare a set
of declarative clauses, in order to loosely follow natural language
specifications.

Modeling complex temporal behavior with relational attributes
is tempting but falls short in all stated requirements for the fol-
lowing reasons. Let us consider a customer’s specific requirement
regarding the refundability options of a partially used ticket (as in
Example 2). It would be easy to add an attribute ‘refundable’ with
a set of predefined values that code the various situations: ‘no re-
funds’, ‘only full refunds’, ‘partial refunds allowed’. The problem
lies in the interaction of these categories with other ticket features
like changeability, e.g. a refund might not be available for a ticket
that was changed. Moreover, both aspects interact with the various
phases of the trip (e.g. before or after the first flight leg was com-
pleted or missed). In principle, every new aspect can interact with
all the others, leading to an exponential blow up of the number of
possible interaction ‘categories’ (e.g. ‘partial refunds allowed only
if requested before the date of the first flight leg’, ‘partial refunds
allowed even if the first leg is missed’). These categories then be-
come too numerous to specify as schema attributes. They are hard
to define and specify for the contract providers and, even more im-
portantly, hard for the consumer to understand, leading either to a
lack of expressiveness (violating requirement i) or a bloated inter-
face (ii). Moreover, publishing contracts with policies that differ
from the existing ones might change the relational schema, adding
and/or modifying attributes. This would force the revision of pre-
viously published contracts (iii). Lastly, the relational schema re-
sulting from such a modeling would be very far from the original
informal description (iv).

Our proposal considers a common vocabulary of events (e.g.
‘ticket refunded’, ‘flight used’, ‘flight missed’, ‘date changed’) that
is small enough to overview and will act as the interface between
providers of contracts and customers that query them. Analogously
to the real world, the temporal behavior of contracts is specified as
a set of declarative clauses referring to the common vocabulary, as
are the temporal properties required by the customer. The vocab-
ulary refers to a set of familiar events pertaining to the application
domain, and is much more compact than the rich family of temporal
behaviors usually expressed as declarative clauses in contracts (e.g.
‘allowing a partial refund after the first leg is used’). Intuitively, a
contract allows only certain temporal sequences of events. The al-
lowed sequences have to simultaneously satisfy all the clauses in
the contract. When interested in a particular property of a contract
(e.g. ‘allowing a partial refund after the first leg is used’), cus-
tomers formulate an ad-hoc query against the vocabulary, detailing
the property of a desired temporal sequence of events. The query

simply returns all contracts that allow a sequence satisfying the de-
sired property. We say that such contracts permit the query.

EXAMPLE 3. We use the following event vocabulary to crudely
model single-trip flights: purchase (ticket purchased), use (ticket
used), missedFlight (customer missed the flight), refund (customer
is refunded for the ticket), dateChange (the flight is rescheduled).

The temporal behavior of an airfare that allows flight reschedul-
ings (e.g. Ticket A of Example 2) is described by clauses satisfied
by temporal sequences in which this happens, but also sequences
in which the ticket is used in the originally scheduled date:

1. (purchase) 99K (use) 99K ...
2. (purchase) 99K (dateChange) 99K (use) 99K ...
3. ...

A customer looking for a ticket that allows reschedules even after a
missed flight, would look for sequences with the form:

(purchase) 99K (missedFlight) 99K (dateChange) 99K ...
We believe that representing contracts’ temporal behavior and

user queries with declarative clauses leads to a system that satisfies
the aforementioned requirements. The use of a common vocabulary
along with ad hoc declarative clauses satisfies both the need of ex-
pressiveness and the requirement of a compact and stable interface
(i and ii). In §2.1 we will show how with our notion of permission,
we avoid unnecessary revisions of contracts specifications (iii). Fi-
nally, we show in §2.2 that our system representation is reasonably
close to the natural language specification of Example 2 (iv).

Summarizing our problem setting:
a. We focus on the temporal aspect of querying contracts, so we
assume a traditional DBMS takes care of the features modeled as
relational attributes.
b. The temporal behavior of a contract is specified with declara-
tive clauses that represent a set of allowed temporal sequences of
events.
d. A contract permits a temporal query (also specified as a declar-
ative clause) if it allows a sequence satisfying the query property.
e. Our system stores the temporal specification of all contracts and
has to provide a scalable and high performance way to retrieve all
contracts that permit an online temporal query.

Solving this problem involved the following contributions:
1. We model an intuitive notion of permission with respect to con-
tracts and queries, which captures the temporal behavior aspects
that are not handled currently by state-of-the-art systems. Our no-
tion gracefully handles the fact that contracts might not specify the
behavior of all events mentioned in a query, finding the best de-
sign tradeoff between two extremes. Indeed, returning contracts
that do not explicitly allow the requested behavior for a particular
event would incentivize publishing underspecified contracts, mak-
ing the system useless to consumers. While forcing full specifica-
tion would dramatically increase publishing costs.
2. Aiming to represent and reason about temporal aspects, we
picked a standard and well established formalism, namely Linear
Temporal Logic. Checking permission does not reduce to any of the
many decision problems studied for LTL, so we developed a novel
algorithm. Note that we do not expect end users to utilize LTL
directly. Analogously to SQL in database-powered e-commerce
systems, LTL will be used in our system only by application devel-
opers. User-friendly GUIs for LTL have previously been studied
[5], but they are not the focus of this paper.
3. We develop a novel indexing scheme for large scale databases
of contracts that allows our system to quickly identify a set of can-
didate contracts for a given temporal query. This eliminates the
need to execute the complex permission algorithm on every single
contract temporal specification in the repository and is extremely
effective for highly selective complex queries.

398

4. We develop a novel way to automatically simplify temporal
specifications of contracts based on the events cited in a query.
This allows our system to execute the permission algorithm on
smaller contract specifications and provides the best results for sim-
ple queries that mention few events.
5. Finally, we provide an experimental evaluation of our techniques
to prove the feasibility of our approach. Exploiting both our index-
ing techniques, we show an optimized average query evaluation
time of 6sec over databases of 3000 contracts, improving by more
than an order of magnitude over the unoptimized average time of
98sec. Note that our prototype ran on a standard desktop pc and did
not take advantage of multiple cores, as we focused on the benefits
of the indexing techniques and not of a particular hardware plat-
form. The size of the tested databases is adequate for most applica-
tions as a complete implementation would use relational attributes
(e.g. travel date and destination) to pre-select contracts from a po-
tentially much larger database.

The rest of the paper is organized as follows. Section 2 infor-
mally introduces the temporal search problem, Section 3 presents a
high level unoptimized system architecture along with our novel
permission algorithm, Section 4 describes our indexing scheme,
Section 5 describes our automatic simplification technique, Section
6 details the formal foundations of our work, Section 7 presents our
experimental results, Section 8 discusses some related work, and
Section 9 concludes the paper.

2. QUERYING CONTRACTS
To ease the presentation of our contributions we provide an in-

tuitive description of our work in the first sections of the paper and
we relegate the formal foundations of our results to §6.

Following §1, we refine the intuition of ‘sequence of events’ by
adding the notion of snapshot. At every moment in the temporal
sequence, many events could be happening, a snapshot captures all
the information regarding the events in a particular moment (i.e. a
truth assignment for every event in the vocabulary). A temporal
sequence is then just a list of snapshots. Intuitively, we are able to
define declaratively properties of these temporal sequences using
clauses. We define a contract as a set of clauses that identify the
set of allowed temporal sequences of snapshots, and a query as a
clause that specifies the required property of a temporal sequence.

2.1 Designing the Permission Semantics
Usually, customers are interested in knowing if a certain sequence

will be possible if they subscribe to a contract. More precisely, they
are interested in a particular property of that sequence (e.g. the fact
that a ticket is partially refundable), which they specify using the
query clause. A natural first-cut semantics would be that a contract
is returned as a result of a query q, if at least one of its allowed se-
quences satisfies q. This semantics, however, has a subtle problem.

EXAMPLE 4. Let us consider Ticket A of Example 2, but with
a common vocabulary that contains also the event ‘class upgrade’.
The airfare policy is still that no refund is allowed after a date
change and that date changes are unlimited. Let us assume that a
customer issues the following query:
Q2 An airfare that allows a class upgrade after a date change.
If we think of a sequence of events in which the customer obtains
a date change and then obtains a class upgrade, we can easily see
that it satisfies all clauses of Ticket A (since they impose no restric-
tion of class upgrades, which are not mentioned). It follows that
under this semantics Ticket A will be returned as part of the result.
In Example 4, using the first-cut semantics, a contract, which did
not say anything about class upgrades, is returned as part of the re-
sult of a query regarding class upgrades. Clearly, the contract is not

fully specified with respect to Q2. We contend that returning con-
tracts that are underspecified w.r.t. a query (as in Example 4) would
not serve customers well for two reasons. First, customers would
be required to read all returned contracts in order to know which
contracts explicitly permit the query and which ones were under-
specified. Second, in order to gain visibility, publishers would be
incentivized to publish underspecied contracts, that would be se-
lected by more queries. This would exacerbate the first problem
and make our system useless. However, we cannot solve the prob-
lem of underspecified contracts by forcing full specification on the
part of contract publishers, as it would raise the publishing cost
considerably. It would also prevent a simple introduction of new
events in the common vocabulary, as a modified vocabulary would
force a revision of all contract specifications in the system.

For these reasons we refine the first-cut semantics in order to
exclude contracts that do not explicitly allow some events. Our
refined semantics takes into account only the events cited in each
contract, and assumes that the contract makes no commitment on
events not explicitly cited in its clauses. In Example 4, Ticket A
would not be returned because it never cites events regarding class
upgrades. This discussion motivates the following final semantics
for permission, stated formally in §6.1 and informally as:

Definition 1. A contract permits a query if and only if there ex-
ists a sequence that (a) is allowed by the contract, (b) consists only
of the events mentioned in the contract, and (c) satisfies the query.

Note that the restriction to the events cited in the contract does
not result simply in the immediate conclusion that a contract that
does not mention all events in a query q does not permit q. Con-
sidering Ticket B of Example 2 (i.e. all refunds, date changes only
before scheduled departure), it is easy to see that it should be re-
turned if the customer is interested in the following contracts:
Q3 After a date change, airfare allows a class upgrade or a refund.
This is because, even though Ticket B does not specify a class
upgrade policy, it explicitly allows refunds after date changes.

2.2 Declarative language
During the modeling of both synthetic and real-world contracts

and queries, we found that temporal logic resulted expressive enough
to capture the temporal behaviors at hand and also very close to the
informal specification. Moreover, many other domains deal with
temporal behavior of systems, most notably model checking and
verification ([25]). In all these domains, temporal logic has be-
come the accepted standard formalism for declaration of properties
over temporal sequences, and many techniques based on this kind
of logic are successfully applied to industrial level implementations
of tools [14], [4], [17].

We use the simplest form of temporal logic (Linear Temporal
Logic, LTL [20]) as the formalism to capture declarative clauses,
informally introduced in §1. For the formal treatment of the use of
LTL refer to §6.1. As an example, we report here the LTL specifi-
cation of Ticket C from Example 2:
Ticket C 1. G(¬refund)

2. G(dateChange→ X(¬FdateChange))
3. G(missedF light→ ¬FdateChange)

Clause 1 is read ‘globally not refund’, globally (G) means that a
certain formula has to be true in all the snapshots of a sequence.
Clause 2 reads ‘globally, if a date change occurs, then in the next
instant (X) it is not the case that eventually another date change
occurs’, eventually (F) means that a certain formula will be true in
some future instant. Clause 3 reads ‘globally, if a flight is missed,
it is never the case that eventually a date chage occurs’. Note how
these formulas are close to the informal description of Example 2.

399

In our LTL specifications, we consider a common vocabulary
of propositional variables V . A variable is intuitively associated
to an event and it is true in a snapshot where its associated event
happens. LTL is essentially a propositional logic which, in addition
to the usual boolean operators, uses some temporal operators with
the following intuitive meaning:
• Xp, p is true on the next instant
• Fp, eventually p is true
• pUq, q is eventually true and p is true until q is true
• Gp, globally (i.e. in every instant) p is true
• pBq, p is true before q is true
• pWq, weak until: p is always true or p is true until q is true

EXAMPLE 5. Let us see how the clauses of the contracts in Ex-
ample 2 can be expressed in LTL. We assume a vocabulary V con-
taining the event variables {purchase, use, missedFlight, refund,
dateChange}.First, we need to model the intuitive meaning of the
events in the vocabulary with some additional clauses that are com-
mon to all three airfares. Informally:
C1 The ticket is purchased once.
C2 The ticket has to be purchased before any of the following

events: it is used, the flight missed or rescheduled, or the
customer is refunded.

C3 If the flight is missed, the ticket is unusable unless rescheduled
C4 If a refund is issued, then no other event can happen
C5 If the ticket is used, then no other event can happen

The full LTL specification is then:
C0 In this case, we force the fact that only one event happens in

each instant,
G(purchase→ ¬use ∧ ¬missedF light ∧ ¬refund∧
¬dateChange),
G(use→ ¬purchase ∧ ¬missedF light ∧ ¬refund∧
¬dateChange),
...,

C1 G(purchase→ X(¬Fpurchase))
C2 G(purchase B

(use ∨missedF light ∨ refund ∨ dateChange))
C3 G((missedF light→ ¬Fuse) W dateChange)

C4 G(refund→
¬F(use ∨missedF light ∨ refund ∨ dateChange))

C5 G(use→
¬F(use ∨missedF light ∨ refund ∨ dateChange))

Ticket A 1. G(dateChange→ ¬Frefund)
2. no clause necessary

Ticket B 1. no clause necessary
2. G(missedF light→ ¬FdateChange)

Ticket C 1. G(¬refund)
2. G(dateChange→ X(¬FdateChange))
3. G(missedF light→ ¬FdateChange)

Note that the specifications of the contracts will be the conjunc-
tion of all common clauses along with the specific ones (e.g. for
Ticket A: C0,C1,C2,C3,C4,C5,TicketA). Also, note that some nat-
ural language clauses (e.g. ’Unlimited date changes’) did not re-
quire any additional LTL clause, as they are implicit in the LTL
semantics. This is because they did not add any additional con-
straints to what was already specified in the common clauses (e.g.
for date changes: C0,C2,C3,C4,C5).

LTL as a developer language We want to stress the fact that
the usage of LTL in our scenario is similar to the use of SQL in
database powered e-commerce applications: LTL will be used by
the application developers. User-friendly GUIs for LTL have been
studied [5] and they are not the focus of the present paper.

init

s t a t e _ 1

p u r c h a s e

s t a t e _ 2
d a t e C h a n g e

s t a t e _ 4

use | | r e fund s t a t e _ 3

missedFlight

d a t e C h a n g e

u s e

missedFlight d a t e C h a n g e

refund

(a)

init t r u e

s t a t e _ 1

missedFlight

t r u e

s t a t e _ 2

refund

t r u e

(b)
Figure 1: BAs for: (a) Ticket A of Example 2 (no refund after a
date change AND unlimited date changes, (b) a query asking for
a refund after a missed flight. Double circled states are final. For
readability: In (a), we assume that every label is a conjunction
containing a literal for every event mentioned in the contract. We
show only the positive ones, e.g. refund is short for refund ∧
¬purchase∧¬missedF light∧¬dateChange∧¬use. No label
means that all the events are negated.

2.3 Data model
In order to reason on temporal clauses expressed in LTL, we

make use of an important connection [28] between LTL and a par-
ticular kind of finite state automata, called Büchi automata (BA).
Exploiting results in [28], many tools (e.g. [12]) build a BA accept-
ing all and only the sequences that satisfy a given set of declarative
LTL clauses. As we will see, this reduces our problem to search-
ing a database of BAs representing contracts, while checking an
individual contract reduces to exploring paths in its BA.

Büchi automata (BA) are similar to standard finite state automata,
with the exception that they recognize infinite strings. The BA ac-
ceptance condition is that a string is accepted if the recognizing
automaton traverses a final state infinitely many times. Note that
the labels of our BAs are conjunctions of literals (i.e. conditions
postulating the existence (positive) or absence (negated) of a single
event in a snapshot, e.g. purchase, ¬use) that have to be satisfied
by the current snapshot, in order for the transition to be enabled
during recognition (Figure 1).

To some readers the choice of using infinite sequences might
seem unnecessarily complicated. We note, however, that using infi-
nite sequences does not reduce the expressive power of the formal-
ism, as any finite sequence can be encoded simply appending an
infinite list of dummy snapshots. Moreover, for technical reasons,
infinite sequences are the standard formalization when reasoning
about temporal properties [28].

We provide now an intuitive example of BAs in our context (the
formal definitions can be found in §6.2.1).

EXAMPLE 6. Let us consider the Büchi automaton in figure 1b.
If we use the automaton to recognize a sequence of snapshots, it is
easy to check that it will accept it if and only if this sequence con-
tains a snapshot in whichmissedF light is true and in at least one
snapshot after that refund is true. Indeed, recall that the accept-
ing condition is that the automaton traverses state_2 infinitely
many times. Since this state has a self loop with true as label, it
means that once that state is reached, it will always be part of a
cycle, and thus traversed infinitely many times.

3. SYSTEM ARCHITECTURE
In §3.1 we introduce an algorithm that checks permission of a

query by a contract using their BA representations. This algorithm
suggests a straightforward implementation for our brokering sys-
tem. At registration time, a contract LTL specification is translated
to an equivalent BA representation that is the one stored. In our
prototype we use an existing tool [12] to perform this stage. At
query time, the query in LTL form is converted to an equivalent

400

BA in the same way and then checked (using the above mentioned
algorithm) against all the contract BAs in the database. As we will
see in §3.1, however, the permission problem has a high complexity
lower bound, which makes such an approach impractical.

We expect our contract database to be fairly static and each con-
tract to be queried multiple times. Our indexing techniques (§4 and
§5) share the common idea of precomputing some auxiliary infor-
mation during the registration step, in order to achieve faster online
query processing. In essence, we are indexing a set of BAs for
permission lookup.

3.1 Algorithm
Our algorithm uses the BA representations of a contract and a

query to check if the first permits the second. From the BA accept-
ing condition in §2.3 and Example 6, it follows immediately that, to
accept a sequence, there is a path through the states of a recogniz-
ing BA that is formed by concatenating a finite simple path (prefix)
that leads to a final state k (called knot) and by iterating infinitely
many times through a simple cycle that leads back to k. These kind
of paths are called lasso paths. They are infinite but have a finite
representation, consisting of the prefix and the cycle.

A classical result [28] states that a sequence ρ satisfies a temporal
property ϕ if and only if any BA for ϕ traverses a lasso path while
recognizing ρ. We refer again to §6.2.1 for a formal treatment of
BA in our context.

Now recall Definition 1 in §2.1. Assuming that both the contract
and the query are represented by the BAs of all their allowed se-
quences, we provide below the intuition that the lasso path concept
can be exploited for a permission checking algorithm.

EXAMPLE 7. Let us consider the contract BA in figure 1a and
the query in figure 1b. It is easy to see that the sequences that are
accepted by both automata satisfy a lasso path of the form {init,
1, ..., 1, 3, ..., 3, 4, 4, ... } in the contract BA, and of the form {init,
.., init, 1, ..., 1, 2, 2, ... } in the query BA.

Intuitively, we see that we can build a sequence that satisfies a
lasso path for both the contract BA and the query BA (i.e. we just
need to synchronize the traversal of the transitions 1 → 3 in the
contract BA with the init → 1 in the query BA and 3 → 4 with
1→ 2). Note that in this process we tried to pair the labels on the
mentioned transitions (evidently not all labels are ’compatible’).

The intuition in Example 7 rests on the concept of pairing a lasso
path on the contract BA with another lasso path on the query BA.
We can provide a more precise intuition by introducing the concept
of simultaneous lasso path.

Definition 2. A simultaneous lasso path is a sequence of pairs
of states 〈si, qi〉i≥0 so that:

1. 〈si〉i≥0 is a lasso path in the contract BA
2. 〈qi〉i≥0 is a lasso path in the query BA
3. for every i, the labelαi of the ith transition of 〈qi〉i≥0 and the

label σi of the ith transition of 〈si〉i≥0 are compatible. This
happens when: (i)αi refers only to events in the contract, and
(ii) αi and σi do not conflict (i.e. if αi contains dateChange,
σi cannot contain ¬dateChange)

In §6.2.1 we formally treat this intuition, resulting in:
THEOREM 1. Let C be a contract and q a query. There exists

a simultaneous-lasso path in the BAs representing C and q if and
only if C permits q.

Note that simultaneous lasso paths as in Definition 2 are infinite.
However, we can finitely represent them with the prefixes and cy-
cles for both the contract and query lasso paths. Given a BA, note
that there exists a finite number of simple paths that can be used
as prefixes and cycles. This provides us with a finite search space

for all possible lasso path representations. It follows that, using
Theorem 1, we can naively solve the permission problem by gen-
erating all possible representations of lasso paths for the query and
contract BAs and then checking if they are a simultaneous lasso
path (i.e. they satisfy Definition 2). This naive algorithm implies
decidability of the permission problem.

A better algorithm can be coded with a simple backtracking search
on the two BAs. We refer to §6.2 for the complete description of
the algorithm. However, the details provided in this section suffice
to follow the presentation of our indexing techniques.

Complexity The backtracking search results in a LOGSPACE
complexity in the size of the BAs. The size of BAs, however,
is known to be worst case exponential in the size of the original
clauses (i.e. contract specifications and queries) [28]. This results
in a PSPACE upper bound. With a reduction from LTL satisfiabil-
ity [22] we prove in [6] that the bound is tight and the problem is
indeed PSPACE-complete. While this complexity implies an expo-
nential running time, it is not an impediment to a practical imple-
mentation, for two reasons. First, the exponentiality is in the size of
the query and a single contract, both of which are relatively small
compared to the size of the contract database. Second, the transla-
tion from clauses to BA seldom results in an exponential blowup.
Indeed, our experiments confirm that a practical implementation is
feasible due to the indexing techniques described next.

4. PREFILTERING INDEX
The technique that we present in this section reduces the number

of executions of the verification algorithm by pruning the number
of contracts to test. At registration time, an index data structure is
updated with information about the contract. At query time, the
index is used to identify a set of contracts which is guaranteed to
contain all contracts permitting the query. The permission algo-
rithm can then run only on these contracts (candidates).

At a high level, the technique extracts a necessary condition for
permission from the query BA (called pruning condition), it then
uses the index data structure to quickly identify the set of candidate
contracts satisfying that condition.

4.1 Pruning Conditions
EXAMPLE 8. Consider the query BA in Figure 2c. Since per-

mission is checked looking for a simultaneous lasso path, it is clear
that, in order to permit this query, a contract BA must have some
transitions that are compatible (as in Definition 2, point 3) with
both formulas: dateChange and use. Otherwise, no simultane-
ous lasso path can be built. While this condition is necessary, it is
clearly not sufficient: the contract in Figure 2a has such transitions
but does not permit the stated query.

We now generalize the idea of Example 8. From Theorem 1 we
know that we have to build a simultaneous lasso path. This means
that, by definition, a lasso path has to exist in the query BA. We
also know that all transitions in this query lasso path have to be
‘compatible’ to their simultaneous transitions in the contract BA. It
follows that in the contract BA, at the very least, there has to exist
one compatible label for every label in the query lasso path.

From this observation, it follows that if we find all lasso paths
in the query BA, we can create a set of candidates by gathering all
contracts whose BAs contain a compatible label for every label of
a query lasso path. The problem is that the number of query lasso
paths is exponential in the size of the query automaton. However,
we never explicitly compute all lasso paths, as we can extract a
more compact representation directly from the query BA.

In order to explain this, we assume access to a data structure that
returns S(λ), the set of contracts in the repository that contain a
label compatible with a given query BA label λ. We will describe

401

init s t a t e _ 1
p u r c h a s e

s t a t e _ 2

d a t e C h a n g e

s t a t e _ 3

use OR

missedFlight

use OR

missedFlight

(a)

init s t a t e _ 2
p u r c h a s e

s t a t e _ 3

d a t e C h a n g e

s t a t e _ 4

useFirst

useFirst

s t a t e _ 5

askRefund

s t a t e _ 6

u s e S e c o n d

refund

(b)

init

s t a t e _ 1

d a t e C h a n g e

*

s t a t e _ 2

d a t e C h a n g e

*

s t a t e _ 3

u s e

*

(c)

init* s t a t e _ 1
mis s

s t a t e _ 2

fl ightCanceled

*

changeApproved

s t a t e _ 3

*

s t a t e _ 4

r e q u e s t C h a n g e*

r e q u e s t C h a n g e

changeApproved

*

(d)
Figure 2: Büchi automata for (a) a ticket that allows no refunds and date changes only before the scheduled departure (Ticket C of Example
2), (b) a round-trip ticket allowing a single change before the first flight and a refund for the second one, (c) a query asking for two date
changes, (d) a query asking for tickets that can be changed indefinitely even after a flight is canceled or it is missed and already rescheduled
once. Double circled states are final. Note: BA (a) and (b) follow the same convention as Figure 1a.

the implementation of this data structure in §4.2.
EXAMPLE 9. Consider the query BA in Figure 2d. It only con-

tains a single final state state_2. In order to build a lasso path
knotted in state_2, we need to have both a prefix and a cycle. By
visual inspection, there are only two possible prefixes that are sim-
ple paths (i.e. do not contain cycles): one with label flightCanceled,
the other with miss and changeApproved. We do not consider
the self-loops in init and state_1 (and any other cycle) be-
cause their labels are not strictly necessary to build a prefix, so we
cannot exclude any contract for not having them. Knowing all the
possible prefixes, it follows that all the contracts that contain labels
compatible with these prefixes are in the following set:
S(flightCancelled) ∪ (S(miss) ∩ S(changeApproved))
The idea is that this set will be smaller than the whole database.

We can also prune other contracts by considering the cycles of the
query lasso paths knotted in state_2. Since the transition from
state_2 to state_3 is labeled with true, it provides no way
to prune any service. It follows that in order to go from state_2
to state_4 we can only force the presence of a transition com-
patible with requestChange. In order to reach back state_2
we need changeApproved. Adding this condition to the previous
one (i.e. intersecting the two sets), we know that we need to run the
permission algorithm only for contracts in the following set:

(S(flightCancelled)∪(S(miss)∩S(changeApproved)))∩
(S(requestChange) ∩ S(changeApproved))2

In Example 9 we generated a set of candidates from a condition
derived from the analysis of lasso paths knotted in state_2. We
call conditions of this kind lasso pruning conditions. A lasso prun-
ing condition for a knot k selects all contracts that permit the query
with a simultaneous lasso path whose query lasso is knotted in k.

It is clear that any contract permitting the query in Example 9
will permit it with a simultaneous lasso path whose query lasso is
knotted in state_2. This is because the query BA has a single
final state. In general, a query BA contains more than one final
state.Since any simultaneous lasso path is enough to guarantee per-
mission, we have to build a lasso pruning condition for every final
state and then take the union of the sets retrieved by them.

Our implementation, fully described in [6], exploits a memoiza-
tion scheme to compute lasso pruning conditions, that results in a
linear complexity w.r.t. the query BA size.

4.2 Index data structure
In §4.1, we assumed a way to easily compute S(λ), i.e. the set

of contracts in the repository that contain a label compatible with a
query BA label λ. We will now introduce the index data structure
that we use to perform this operation.

At a high level, we have to find a way to identify labels that are
compatible with λ, and then gather all contracts containing them.
Clearly, we do not want to scan the set of all labels in the contract

Label: {}

Contract set: {A,C}

{m}

{A,C}

{r}

{A}

{ m}

{A,C}

{ r}

{A,C}

{m,r}

{}

{m, m}

{}

{m, r}

{A,C}

{r, m}

{A}

{r, r}

{}

{ m, r}

{A,C}

Figure 3: Prefilter index for the two contracts in Figure 1a (Ticket
A, called A) and 2a (Ticket C, called C). For readability we only
show nodes with labels containing events missedFlight (m) and re-
fund (r) and the structure is limited to the first two levels.

database. The main idea is to use the literals of λ to navigate a data
structure that contains sets of contracts.

Let us assume, for ease of presentation, that each label in con-
tract BAs contains all events in the contract vocabulary (we shall
drop this assumption shortly). This means that checking compat-
ibility can be peformed simply by checking that the λ literals are
included in the contract labels’ literals. Since in the labels the order
of literals is not important, the problem reduces to searching in a
collection of sets for superstes of a query set. For this purpose we
modify a standard TRIE [11] data structure by making it a simple
directed acyclic graph (Figure 3). The root is connected with nodes
labeled with single literals. Every node labeled with a literal l in
this first ‘level’ is connected with nodes in a second level that are
labeled with a set of two literals containing l, and so on. Clearly,
this structure is not a tree because, for instance, a node in the sec-
ond level labeled {a,¬b} is reachable from the node {a} and the
node {¬b}. We, also, associate each node labeled with the set of
literals l to the set of contracts whose BAs have at least one transi-
tion with a label containing l. Now, in order to retrieve S(λ), we
just navigate the graph to the node labeled with the literals in λ, and
output its associated set of contracts. This lookup is linear in the
number of literals in λ and independent of the number of contracts.

EXAMPLE 10. Consider the two contracts in Figure 1a (Ticket
A) and 2a (Ticket C), called A and C. For readability, we show
only a partial view of the full data structure in Figure 3 (only events
missedF light and refund, only the first two levels). Remember
that the BAs in Figures 1a and 2a show only the positive literals,
as noted in Figure 1a. So, for instance, both BAs have a tran-
sition labeled missedF light in the pictures, that actually stands
for missedF light ∧ ¬refund, considering for readability only
the aforementioned events. This results in A and C being added
to the nodes labeled {missedF light,refund}, {missedF light}
and {refund}. Note how only Ticket A has a label with refund.

If we consider the query in Figure 1b, it is easy to see that a
lasso pruning condition is S(m) ∩ S(r). Trivially, S(m) is the set

402

of contracts associated with the node labeled m and evaluates to
{A,C}. S(r) is {A}. The whole condition selects the candidate
{A}. Using the prefiltering technique, we avoid the execution of
the permission checking algorithm on contract C.

In Example 10, the transitions of contract BAs always contain
all events mentioned in the contracts. This allowed us to use our
previous assumption and check compatibility using containment.
This is not always the case, but we present now a way to reduce
compatibility to containment by introducing additional literals to
the nodes’ labels. First, we note that the reason our previous as-
sumption does not work in general is because, in order to check
compatibility between λ and γ, we might have to consider not only
the literals in γ but also the ones cited in its contract c. This is the
case, for instance, if γ is the boolean formula refund, in a contract
that cites both refund and dateChange. We have then that both
labels, refund∧ dateChange and refund∧¬dateChange are
compatible with γ. In order to treat compatibility checks as con-
tainment checks, we create a set for γ (called the expansion, E(γ))
that contains all literals in γ plus all literals (both positive and neg-
ative) for any remaining event cited in its contract.

EXAMPLE 11. Let us consider a transition label t = p ∧ c
from a contract that cites the events p, c and m. Given the above
definition we have that its expansion E(p ∧ c) = {p, c, m, ¬m}.
We have that a query transition q = p ∧ m is compatible with t,
because {p,m} ∈ E(p ∧ c). And q′ = p ∧ ¬c and q′′ = c ∧ r are
not, because {p,¬c} /∈ E(p ∧ c) and {c, r} /∈ E(p ∧ c).

Now, we can adopt the same strategy shown in Example 10 just
by changing the contract set associated to each node. Every node
labeled with a set of literals l is now associated with the set of
contracts whose BAs have at least a transition with label γ s.t. E(γ)
contains l.

The problem we face in the implementation and scaling of this
solution is that the number of possible node labels is exponential
in the size of the vocabulary. This means that the index grows ex-
ponentially in size, leading to intractability. In order to avoid this
exponential blow up, we limit the size of node labels (i.e. the num-
ber of ‘levels’ of the data structure) to a predefined number k. We
now have to deal with the lack of nodes with labels greater than
k, as nothing changes when retrieving S(λ) with |λ| ≤ k. On the
other hand, when we retrieve S(λ) with |λ| > k, we can just take
any set associated with a node whose label l is contained in the
literals of λ. We call this set S′(λ) and, by construction, S′(λ)
contains S(λ).

This modification does not affect the soundness and complete-
ness of the technique because pruning conditions need to evaluate
to a set that just contains a certain set of contracts (§4.1). Since con-
ditions use only union and intersection operators, they are mono-
tonic. This means that the fact that the S′() returned by the data
structure are supersets of the required S() results in a set of can-
didates that is a superset of the one returned if we were using the
correct S(). Since all candidates will be checked with our permis-
sion algorithm and we are returning a superset of the original set of
candidates, soundness and completeness are preserved.

5. BISIMULATION INDEX
In this section we describe an indexing technique that is based on

the observation that the query usually pertains to a much smaller set
of events than the full contract specification. At registration time,
we precompute a set of simplified versions of every contract BA.
Intuitively, these simplified versions can be thought as ‘projections’
of the full contract specification on a subset of events (i.e. albeit
smaller, they faithfully represent the behavior of the contract with

init s t a t e _ 2
!d

s t a t e _ 3

!d

s t a t e _ 4

!d!d

!d

s t a t e _ 5

!d

!d

s t a t e _ 6

!d!d

!d
!d

(a)

init s t a t e _ 2
!d

s t a t e _ 3

!d

s t a t e _ 4

!d!d

!d
!d

s t a t e _ 6

!d

!d

(b)
Figure 4: The dotted states can be substituted with a single one,
when checking permission w.r.t. query regarding only dateChange.
For readability: d = dateChange. (a) projection of BA in Figure 2b
on ¬ dateChange. (b) simplified version of (a).

respect only to the considered events). At query time, our system
retrieves the appropriate precomputed ‘projection’ for each candi-
date contract that has to be checked for permission.

5.1 Simplified contract automaton
We will show now how we use a simplified version in lieu of

the full contract BA.First we define a notion of equivalence with
respect to a query q: two contracts BA A and B are equivalent
if they both either permit or do not permit q. From Theorem 1, it
follows that this is the case if and only if we can build simultaneous
lasso paths with the query BA for A and B, or we fail for both.

We will now show how to simplify the transitions of a contract
BA in order to obtain a projection BA that is equivalent to the orig-
inal one w.r.t. a query. Then, we will reduce the number of states
of this projection obtaining a simplified BA, on which to run our
permission algorithm.

Let us start by simplifying the transitions. First, remember that
in order to build a simultaneous lasso path we need two lasso paths
(one for the contract BA, one for the query BA) whose transitions
are compatible in every instant. It follows that the only information
needed to find this simultaneous lasso path is if a contract label
is compatible with a query label. For instance, if a query BA has
transitions that contain only the labels true and dateChange, the
only information we need to derive compatibility (besides knowing
all events in the contract) is the presence of ¬dateChange in the
contract transitions. It should be intuitive now why it is useful to
introduce the concept of projection. Given a contract BA A and
a set of literals L, we call projection of A on L (i.e. πL(A)) the
BA built from A by keeping in every label only literals in L, e.g.
Figure 4a represents the projection BA on ¬dateChange of the
BA in Figure 2b.

In Theorem 5, §6.3, we formalize the following result:

THEOREM 2. Given a BA A and a set of literals L, the projec-
tion of A on L is equivalent to A for all query BAs that refer to
literals that are either negations of literals in L or pertain to events
not in cited in A.

The use of projections alone does not improve the performance
of the permission checking algorithm as the size of the projection
BA is the same as the original one. Projections are, however, sim-
pler BAs than their original counterparts in the sense that many
transitions that had different labels have now the same label.

This provides the opportunity to use a standard state reduction
technique [10] that produces a BA that is equivalent to the orig-
inal one (i.e. it accepts the same set of strings). This classical
polynomial-time technique is based on collapsing bisimilar states
(i.e. replacing them with their bisimilarity class) and is the same
used for the minimization of standard finite state automata [15]. In
the case of BAs it does not produce the minimum BA (BA mini-

403

mization is PSPACE-hard [23]), it does provide, however, signif-
icant reductions in the number of states of our projections. This
allows us to equivalently check our query on a contract BA that is a
projection of our original one but that has significatly fewer states.

EXAMPLE 12. In Figure 4a we show a BA derived from a pro-
jection, where we have two states (state_4 and state_5) that
can be collapsed. Intuitively, once the recognizing BA reaches ei-
ther of those states, it will accept the exact same set of sequences,
i.e. an infinite sequence of snapshots containing ¬dateChange.
Its simplification is shown in 4b.

5.2 Using simplified BAs
The previous section details how we can equivalently use sim-

plified projections to check permission. As we already anticipated
at the beginning of the section, for every contract we precompute
the projections at registration time, so that when our system has to
check permission of a query, it can use the precomputed simplified
projection. Clearly, the most appropriate projection is the smallest
one that is still equivalent to the original BA for the current query.

Given the result in Theorem 2, it is easy to see that in order to
have the smallest projection for every possible query, we need to
have one projection for every subset of literals cited in the contract.
The problem that immediately arises is the fact that the number of
possible projections is, in the worst case, exponential in the size of
the set of events of the contract. We have, however, two important
observations that enable us to pursue the precomputation route.

The first observation is that we do not need to precompute all
projections, as we can use any projection that contains all required
literals for the query, albeit with a possible perfomance penalty.
The second observation is that, in practice, not all subsets of liter-
als generate distinct simplified projection BAs, e.g. in our datasets
the number of distinct simplified projection BAs was ∼5% of the
number of subsets. Intuitively, removing a single event from a pro-
jection does not usually lead to a simplification of the observed
behavior of the others. It follows that it is often the case that the
simplifications are triggered only when whole sets of ‘independent’
events are excluded from the projection. Both these observations
provide us great freedom in designing a system that balances run-
time performance with precomputation time and storage needs.

Storage needs are quite contained, since we do not need to store a
graph for every projection. Since we have the original contract BA,
we can just memorize the list of bisimilar states for a particular
projection. With some care in the implementation, the permission
algorithm does not incur any substantial overhead.

To address precomputation time, we designed a novel algorithm
that efficiently computes all simplifications in parallel. We could
not use the standard bisimulation algorithm ([19]), as we would
have had to run it for every subset of literals. Our algorithm avoids
testing subsets that are not going to result in simplifications and
reuses partial computations between different subsets. For space
reasons, we relegate the description of this algorithm to [6].

In our experiments we found it feasible to precompute all pro-
jections. In the case that contract complexity grows in a way that
precludes full precomputation, we can limit it to subsets of literals
up to a certain size k. This would not affect the evaluation per-
fomance of queries with less or exactly k literals, which are the
ones that mostly benefit from this technique, as the contract BAs
gets significantly simplified. It would affect the evaluation perfor-
mance of queries with more than k literals, which, however, mostly
benefit from the complementary prefiltering index. Other possible
approaches to address increasing precomputation times include the
use of heuristics based on historical data and/or expected workloads
to determine which simplification to precompute.

6. FORMAL TREATMENT
6.1 Permission Problem

The formal counterpart of our intuitive notion of temporal se-
quence is the run. A run ρ is a function ρ(t) : N → T (V), where
N are the natural numbers, T (V) is the set of truth assignments for
the event variables in V , and t a particular instant. The ’tail’ of the
run starting at instant i is written as ρ|i.

The semantics of LTL is given inductively for all boolean oper-
ators and for the temporal operators (X, U). Note that all temporal
operators can be derived from X and U (e.g. Fϕ ≡ true U ϕ,
Gϕ ≡ ¬F(¬ϕ), ϕBψ ≡ ¬(¬ϕ U ψ)). A run ρ satisfies an LTL
formula ϕ (i.e. ρ |= ϕ), iff, inductively:
• ρ |= p, with p ∈ V , iff p is true in ρ(0)
• ρ |= Xϕ, iff ρ|1 |= ϕ
• ρ |= φUψ, iff ∃k ≥ 0 s.t. ρ|k |= ψ and
∀0 ≤ i < k(ρ|i |= φ)
• closure w.r.t. boolean operators (∧, ¬)

Remember from the discussion in §2.1 that our intuitive seman-
tics did not take into account the behavior of events that were not
explicitly cited in the contract. In particular, we wanted to avoid
cases where the behavior of a variable not cited in the contract
specification results in the contract permission of a query that is
not intended to be supported by the contract. In order to formalize
this intuition we introduce the following concepts.

Definition 3. The projection of a run ρ w.r.t a set of event vari-
ables V (a V -projection), is a sequence σ that assigns to the vari-
ables in V the same truth values assigned by ρ, and does not assign
any truth value to other variables. A run ρ is compatible with a
V -projection σ, if σ assigns in every instant the same truth values
of ρ to all variables in V . The set of all runs compatible with a
V -projection is called projection class.

Definition 4. Given an LTL formula ϕ, let V be the set of its
variables. We call P (ϕ) (set of allowed projections of a contract
specified by ϕ) the set of V -projections of all runs satisfying ϕ.

Definition 5. Given an LTL formula ϕ, let V be the set of its
variables. The contract defined by ϕ (referred to as C(ϕ)) permits
an LTL query ψ iff there exists a V -projection σ ∈ P (ϕ) s.t. all
runs in its projection class satisfy ψ.

Intuitively, forcing the property to be true for all runs in a projec-
tion class avoids the case when a run triggers permission only due
to truth assignments of variables not mentioned in the contract.

EXAMPLE 13. Consider a query q that is satisfied by a run ρ of
a contract only because of the behavior of variable v. This means
that without the specific behavior of the variable v, q would not
be permitted, as is the case in Example 4 for the variable ‘class
upgrade’. Note that in the projection class of ρ there is a run ρ′

that does not exhibit the same behavior for v, as v is not part of the
contract vocabulary. It follows that q is not satisfied by all runs in
a projection class and thus it is not permitted by the contract.

6.2 Checking permission
It is easily seen that Definition 5 can be rephrased to:
Definition 6. A contractC(ϕ) with vocabulary V permits a query

ψ iff the intersection of the set of runs satisfying ϕ with the set of
runs satisfying ψ, contains a projection class w.r.t. V .

This alternative definition is more suited for the design of an al-
gorithm as we could think of computing the intersection of the two
sets, and then checking the presence of a projection class in the
intersection. The first part of this algorithm is very similar to the
non-empty intersection problem, extensively studied in other do-
mains (e.g. model checking [25]). To solve this problem the theo-

404

retical tool of choice are Büchi automata (BA), which have a deeply
exploited connection with LTL [28]. Using BAs, we design a new
algorithm that solves the problem with a single step: scanning the
intersection of the two sets of runs and, simultaneusly, checking
that it includes a complete projection class.

6.2.1 Büchi automata
Formally, a Büchi automaton is a tuple {Q, I, δ, F}, where Q is

the set of states, I the initial states and F the final ones. The transi-
tion relation is δ ⊆ Q×Σ×Q, where Σ is the set of disjunction-free
propositional formula over V (e.g. Figure 1).

In order to define the semantics we introduce the concept of path
as an infinite sequence of states σ = σ1, σ2, ..., linked by transi-
tions in δ (i.e. ∀i(∃λ(〈σi, λ, σi+1〉 ∈ δ))). A path is called lasso
path if it is formed by a finite prefix leading to a final state k (called
knot) and by a cycle, iterated infinitely many times, leading back to
k. Intuitively, a run ρ satisfies a path σ if at any instant i the truth
assignment ρ(i) satisfies the formula labeling the transition from
σi to σi+1. Following the result in [28], the accepting condition
can be stated as: a BA A accepts a run ρ, if ρ satisfies a lasso path
of A. We call BA(ϕ) any BA that accepts all and only the runs
satisfying an LTL formula ϕ. We assume that the transition labels
of BA(ϕ) contain only variables in ϕ.

Consider now the problem of verifying that a contract permits
a property. They are both specified as LTL formulae, but our ap-
proach will handle them in form of BAs. As in §3.1, we formalize
this idea by introducing the concept of simultaneous lasso path.

Definition 7. Given a contract defined byϕ (referred to asC(ϕ))
and a query ψ. Let A(ϕ) = {QA, IA, δA, FA} be a BA for C(ϕ)
and B(ψ) = {QB, IB, δB, FB} a BA for ψ, we define a simultane-
ous lasso path an infinite sequence of pairs 〈si, qi〉i≥0 s.t.:

1. 〈si〉i≥0 form a lasso path for A
2. 〈qi〉i≥0 form a lasso path for B
3. for every i, there exist θi a formula s.t. 〈si, θi, si+1〉 ∈ δA

and τi s.t. 〈qi, τi, qi+1〉 ∈ δB, and we have that θi ∧ τi is
satisfiable (i.e. they are not conflicting), and τi contains only
variables in C(ϕ). We say that θi and τi are compatible.

The following theorem, proved in [6], formalizes the intuition.

THEOREM 3. Let C(ϕ) be a contract with variables in V and
ψ a query. There exists a simultaneous-lassopath for C(ϕ) and ψ
iff C(ϕ) permits ψ.

As explained in §3.1, this theorem implies that the permission prob-
lem is decidable.

6.2.2 Algorithm
Our verification algorithm looks for a simultaneous lasso path

in a way inspired by the nested depth first search technique used
in model checking [25], which despite solving a different problem
also relies on finding lasso paths.

Recalling that a lasso path is formed by a prefix and a cycle we
now define similar concepts for simultaneous lasso paths. We call
knot any pair 〈si, qi〉 s.t. it appears infinitely many times in the
simultaneous lasso path and qi is a final state for the query BA.
We call prefix w.r.t. a knot k, the portion of the simultaneous lasso
path from the beginning to the first appearance of k. In order to
define the cycle of a simultaneous lasso path, we have to consider
the fact that the sequence 〈si〉i≥0 has to be a lasso path for the
contract BA. This means that we need to force the existence of a
contract final state in the contract BA portion of the simultaneous
lasso path. More formally, let i be the instant of the first appearance
of a knot k and let j > i be the instant of the first appearance of
a pair 〈si, qi〉 where si is a final state for the contract BA, we call

Algorithm 1: Verifying that C(ϕ) permits property ψ

Input: A = {QA, iA, δA, FA} is the service BA,
B = {QB, iB, δB, FB} is the query BA,
(w.l.o.g. they have a single initial state)
ψ, an LTL query property
Output: returns true if S(ϕ) permits ψ
begin1

visited = ∅2
found = false3
visit(〈iA, iB〉)4
return found5

end6
procedure visit(〈s, q〉)7
begin8

if 〈s, q〉 ∈ visited then return9
visited ⇐ visited ∪{〈s, q〉}10
if q ∈ FB then11

visited2 ⇐ ∅12
cycle_search(〈s, q〉, 〈s, q〉, false)13
if found then return14

foreach 〈s, λA, s′〉 ∈ δA do15
foreach 〈q, λB, q′〉 ∈ δB s.t. compatible(λA, λB) do16

visit(〈s′, q′〉)17
if found then return18

end19
procedure cycle_search(〈s, q〉, start, foundFinal)20
begin21

foundFinal2 ⇐ foundFinal ∨(s ∈ FA)22
if 〈s, q〉 ∈ visited2 then return23
visited2 ⇐ visited2 ∪{〈s, q〉}24
foreach 〈s, λA, s′〉 ∈ δA do25

foreach 〈q, λB, q′〉 ∈ δB s.t. compatible(λA, λB) do26
if 〈s′, q′〉 = start then27

found ⇐ foundFinal228

cycle_search(〈s′, q′〉, start, foundFinal2)29
if found then return30

visited2 ⇐ visited2 \{〈s, q〉}31
end32

cycle w.r.t. a knot k, the portion of the simultaneous lasso path
between i and the first subsequent appearance of k after j.

In order to verify the existence of a prefix and a cycle, we con-
sider the initial pair, then we consider all possible prefixes using
a recursive depth first search: for every pair we inspect both input
BAs (contract and query), build all possible successor pairs (i.e.
those satisfying condition 3 of Def. 7) and recurse on each of those.

Since we do not know in advance the length of the prefix, at ev-
ery step, if the considered pair s = 〈si, qi〉 is a potential knot (i.e.
qi is a final state for the query BA), we verify if there exists a cycle
containing s. To do so, we start a nested search in s which looks
for a path that leads back to s and that also contains a pair 〈si, qi〉
in which si is a contract final state. A straightforward way to look
for such cycles is to perform a backtracking depth first search that
keeps track of paths containing a pair with a contract final state and
returns true iff one of these paths lead back to s. Algorithm 1 im-
plements the strategy we just outlined. Lines 1 through 6 initialize
the sets of visited pairs for the depth first visit, and the global vari-
able that will contain true iff a simultaneous lasso path is found. It
then invokes the procedure visit which recursively generates all
prefixes.

Lines 9 and 10 verify that we are visiting every pair once. Lines
11 through 14 test if the current pair is a potential knot (qi is a final
state). If this is the case, the data structure visited2 is initialized
and the procedure cycle_search is invoked. If it returns suc-
cessfully, the procedure terminates. Lines 15-18 generate all possi-
ble successor pairs by inspecting the transitions in the contract BA

405

Table 1: LTL precedence pattern (s precedes p), from [9]
Global Fp→ (¬pU(s ∨ ¬p))
Before r Fr → (¬pU(s ∨ r))
After q G(¬q) ∨ F(q ∧ (¬pU(s ∨G(¬p))))
Between q and r G((q ∧ Fr)→ (¬pU(s ∨ r)))

(line 15) and in the query BA (line 16). A recursive call to visit
is then issued for each such pair. The predicate compatible at line
16 (and later at line 32) implements condition 3 of Definition 7.

The procedure cycle_search accesses the visited2 variable
which stores the path it is currently exploring. The variable found-
Final2 is true if the current path contains a pair with a contract
final state. Lines 23 and 24, avoid creating paths that contain cy-
cles.Lines 25 and 26, generate all possible successor pairs. Line 27
and 28, update the global variable found if a cycle is present which
contains a pair with a contract final state. If this is not the case, line
29 and 30 recursively continue to extend the current path.Line 31
backtracks to the previous explored path by removing the current
pair from the visited2 variable. In [6], we prove the result:

THEOREM 4. Algorithm 1 returns true iff C(ϕ) permits ψ.
Note that the procedure cycle_search can exploit a simple mem-
oization scheme which stores for every visited pair a boolean vari-
able, which is true if that pair can eventually lead to the original
node. In this way, we can code the whole procedure as a depth first
visit, never visiting any pair more than once.

6.3 Simplified contract automaton
In this section we formalize the intuition of simplified contract

automata, given in the context of our bisimulation index (§5). We
say that a BA A is equivalent to a BA B w.r.t. a query BA Q iff
there exists a simultaneous lasso path for A and Q iff there exists
one for B andQ. We consider a query BAQ, and let LQ be the set
of literals that appear in labels ofQ. Ln

Q is the set that contains the
negation of every literal in LQ.

Definition 8. We call the relevant BA Ar of a service BA A
w.r.t. a query BA Q, a BA that has the same states as A but that
for every transition 〈s, χ, s′〉 ∈ δA has 〈s, χ′, s′〉 ∈ δAr s.t. χ′ is
a conjunction of all the literals in χ that are in Ln

Q.
The following result formalizes Theorem 2 and is proved in [6]:

THEOREM 5. Given a contract BA A and a query BA B, there
exists a simultaneous lasso path forA and B iff there exists one for
its relevant BA Ar and B.

As with the minimization of traditional finite state automata [15],
we use the bisimulation concept to reduce the number of states.

Definition 9. Let a and b be two nodes of a BA A. We say that
a ∼ b (read bisimulates) iff: (1) if a ∈ FA then b ∈ FA and vice
versa, and (2) for every edge 〈a, λ, a′〉 ∈ δA we have 〈b, λ, b′〉 ∈
δA with a′ = b′ or a′ ∼ b′, and vice versa.

We create equivalence classes of BA states (called B(A)) w.r.t.
bisimulation, and we use them as the states of a new BA.

Definition 10. Given a BA A, we call As (its simplification) a
BA s.t. (1) QAs = B(A), (2) IAs is any s ∈ B(A) that contains a
state in IA, (3) FAs is any s ∈ B(A) that contains only states in
FA, (4) let C(a) be the bisimilarity equivalence class for the state
a, for every 〈a, λ, a′〉 ∈ δA we have 〈C(a), λ, C(a′)〉 ∈ δAs .

The simplification of a BA is equivalent to the original one in the
following sense, proved in [6]:

THEOREM 6. For every path σ = σ1, σ2, ... for a BA A there
exists a path σs = σs

1, σ
s
2, ... for As and vice versa, where for all

i, σs
i is the bisimilarity class of σi.

Using Theorems 5 and 6, we prove in [6] the main result that
enables our bisimulation index.

THEOREM 7. Given a service BA A and a query BA B, there
exists a simultaneous lasso path forA and B iff there exists one for
the simplification of its relevant BA (Ar)s and B.

7. EXPERIMENTAL EVALUATION
7.1 Prototype Architecture

Our prototype is written in Java and consists of four independent
modules. The first is the data generator and produces databases of
LTL formulae as described in §7.2. It also converts the formulae
to BAs using the freely available library LTL2BA [12]. Its output
is a text file. The second module generates the prefiltering index
from a text file containing contract specifications. The third pre-
computes the simplified BAs from a text file containing contract
specifications. The fourth module is the runtime module. It uses
the prefiltering index and the simplified BAs in order to evaluate
queries. It takes as input a query workload text file and outputs
statistics regarding their evaluation.

We executed all code on an AMD Phenom 2.2 GHz with 4Gb
of RAM and we used Sun 32bit JVM 1.6.0.10. The code does not
utilize multithreading in order to isolate the technique performance
from system level effects.

7.2 Contract data generation
Given the novelty of our setting, it was impossible for us to find

real databases of contract specifications. Towards a realistic gen-
eration, we adopted a sophisticated generation method based on
real-life usage patterns of temporal properties ([9]). The work in
[9] surveys over 500 real-life specifications of temporal properties
to be formally verified on finite state systems (theoretically equiv-
alent to our contracts) and extracts recurrently appearing patterns
that cover over 92% of the surveyed cases, along with their occur-
ring frequencies. While the specifications of these systems come
from different application domains (e.g. communication protocols,
GUIs, distributed object systems, operating systems, databases),
we contend that the sort of properties that form these specifications
are very similar to the ones found in service contracts, as they are
effectively describing the allowed temporal sequences of interac-
tions between multiple actors. In [9], patterns are classified along
two dimensions: required behavior and scope (i.e. temporal inter-
val in which the behavior has to show itself). The possible scopes
include global (the whole timeline), before (up to certain event), af-
ter (after a given event), between (any part of the timeline between
specified event p and event q). The possible behaviors are:
Absence An event does not occur in the scope.
Existence A given event must occur within a scope. A variation

can force the occurrence number to k.
Universality A given event occurs throughout the scope.
Precedence An event p must always be preceded by an event q. A

variation can consider sets of events instead of p and q.
Response An event p must always be followed by an event q. A

variation can consider sets of events instead of p and q.
As an example, we show in Table 1 (from [9]) the LTL expression
of the precedence behavior for the cited scopes.

Contracts and queries are generated as conjunctions of clauses
expressed as LTL properties. Our generator randomly generates
LTL properties using the distribution reported in [9]; at each gen-
eration it substitutes the variable placeholders (e.g. p, q) with vari-
ables from the common vocabulary. Given a parameter n, it gener-
ates a contract or query specification formed by the conjunction of
n properties thus generated. We refer to [6] for detailed examples
of our generated contracts and queries.

Table 2 shows the statistics of our generated datasets (i.e. con-
tract databases and query workloads). Along with the name of the
dataset we report its size (i.e. number of contracts or queries) and
the number of LTL properties that form each contract or query.
Since we found that the actual complexity of the LTL formulae
is better characterized by the statistics of their associated BAs, we

406

Table 2: Datasets statistics
Dataset name size #LTL patterns #states avg #states stddev #transitions avg #transitions stddev
Simple contracts 3000 5 31.00 34.73 628.71 1253.37
Medium contracts 1000 6 41.82 43.23 964.69 1628.66
Complex contracts 1000 7 50.85 47.5 1291.63 1904.82
Simple queries 100 1 2.31 1.41 5.2 5.4
Medium queries 100 2 5.44 4.81 23.86 33.18
Complex queries 100 3 9.6 11.11 92.84 203.42

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100 500 1000 2000 3000
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

s
p

e
e

d
u

p
 w

.r
.t

.
n

o
 o

p
ti
m

iz
a

ti
o

n

ru
n

n
in

g
 t

im
e

 (
m

s
)

number of contracts in database

avg speedup (with stdev)
avg scan time

avg optimized time

Figure 5: Average speedup and running times (unoptimized and op-
timized) w.r.t. database sizes (small contracts, average of all query
complexities)

also report the average number of states of the BAs in the specifi-
cation and its standard deviation along with the average number of
transitions with its standard deviation.

7.3 Experiments
We measure the running times of query evaluation for the unop-

timized system (§3) and for the system using both the prefiltering
and the bisimulation techniques. The query evaluation time for the
unoptimized system is the sum of the conversion time of the query
from LTL to BA plus the evaluation on the contract database stored
as set of contract BAs. The query evaluation time for the opti-
mized system include the query conversion time plus the time used
to evaluate the query using our precomputed data (i.e. prefilter in-
dex, simplified BAs) in addition to the contract BAs database.

A first batch of measurements aims to prove scalability w.r.t.
the number of contracts in the database. We evaluate all queries
(all complexity levels) on databases of sizes 100 to 3000 of sim-
ple contracts (subsets of the Simple Contract database in Table 2).
For every contract database size, we record the average query eval-
uation time for the unoptimized and optimized systems. To some
readers, these databases might seem too small for practical use. Re-
call, however, that a complete implementation would use relational
attributes (e.g. travel date) to select the contracts that have to be
checked for permission from a potentially much larger database.

A second batch of measurements aims at scalability w.r.t. com-
plexities of both queries and contract specification. We evaluate
individually every query database against contract databases of size
1000 (simple, medium, complex). For every combination of queries
and contract complexities we record the query evaluation time for
the unoptimized and optimized systems.

7.4 Results
First batch - Scaling w.r.t. database size. In Figure 5 the two

lines at the top of the graph represent the average running time in
the case of the unoptimized approach, called scan time, and the one
of the optimized system, called optimized time. The times scale
is on the right y axis and it is in milliseconds and logscale. The
bar chart on the same picture shows the average speedup (along
with standard deviation bars) achieved by the optimized system
compared to the unoptimized one (the speedup scale is on the left
y axis). Notice that the running times for both evaluations scale
nearly linearly w.r.t. the size of the database. The unoptimized

 0

 20

 40

 60

 80

 100

Simple Services Medium Services Complex Services

s
p

e
e

d
u

p
 w

.r
.t

.
n

o
 o

p
ti
m

iz
a

ti
o

n

Simple Queries
Medium Queries

Complex Queries

Figure 6: Average speedup w.r.t. contracts and query complexities
(database size = 1000 contracts)

time ranges from 2sec for a small 100 contracts database to 100sec
in the case of a 3000 contracts database. These times would limit
the usage of our approach in interactive systems. Our optimiza-
tion techniques, however, achieve an average speedup of at least 20
(scaling nicely for larger databases), reducing the average running
time in the case of the 3000 contracts database to few seconds in-
stead of minutes. Note that the speedups increase together with the
size of the database, a common effect of indexing schemes. Finally,
we rarely have speedups less than 10.

Second batch - Scaling w.r.t. complexity. Figure 6 reports
the results for the scalabitility w.r.t. query and contract complex-
ity. The bars represent the average speedups (along with standard
deviation bars) of the optimized system compared to the unopti-
mized one w.r.t. complexities of both contracts in the database and
queries. We explain the reduced speedup of complex queries not-
ing that, using more variables, they cannot take advantage of the
most simplified contract BAs. The bisimulation technique is also
responsible for the increasing speedup w.r.t. complexities of the
contracts. Usually complex contracts cite more variables and with
the bisimulation technique the algorithm can ignore the behavior of
all variables that are not used in the query.

Index building and size. For our optimized evaluation, each
contract database required the precomputation of two data struc-
tures. The computation of the prefiltering index (§4.2) lasted less
than 25 mins for our largest database of 3000 contracts. The aver-
age insertion time was around 500ms. The size is also minimal as
our largest prefilter index (3000 contracts) was ∼10Mb.

The computation of the simplified BAs is more expensive as we
compute all possible projections. For our 3000 contract database
the average insertion time of a contract is 42secs, and the total
computation of our largest datasets took 11 hours on our worksta-
tion using three cores. Since the workload is completely parallel
(each contract is simplified independently), scaling the number of
contracts can be tackled by adding resources. Moreover, to address
increase in contract complexity, we can compute only the projec-
tions with few literals, while still obtaining significant benefits. As
motivated at the end of §5.2, these projections would be used by
small queries, which benefit the most from this technique. The
size of the simplified BAs data is on average around 80% of the
database original size and in absolute terms quite contained: our
largest database of 3000 contracts had a combined size (database
plus simplified BAs) of 112Mb.

407

8. RELATED WORK
To the best of our knowledge, this is the first work that deals

with the discovery of contracts based on their temporal behavior.
Previous works in electronic commerce and enterprise computing
have dealt with the problem of managing contracts. The field of
e-contracting [2] deals with the automation of contracting practices
and it is mainly tailored for the B2B case. The direction that is
most relevant to the present work is the verification and monitor-
ing of real world contracts. Contracts are usually represented us-
ing rules written in some form of temporal and/or deontic logic
(i.e. stating permissions, obligations and prohibitions), [16], [18].
Both [16],[18] perform verification on contracts specified with de-
ontic constraints. These works focus on the internal consistency of
contracts, leading to the need of more expressive specification lan-
guage. Queries on a database of contracts are never considered and
we are not aware of any contract indexing scheme. Moreover, in
[16] the higher order logic used to represent contracts is internally
translated to Büchi Automata, opening the way to the application
of our indexing techniques also for such higher order formalisms.
To the best of our knowledge, our work is the first dealing with
indexing of databases of Büchi Automata.

Web Service search exhibits many similarities with our prob-
lem. Web Services are complex pieces of software that expose their
functionality on the web. Many works have addressed this problem.
Some of them do not consider the temporal behavior, focusing on
search in their annotated natural language description ([8]), hence
are not applicable to our context. In [13], a method based on graph
matching is proposed in order to implement behavioral similarity
search of web services. This system returns approximated results,
expecting a domain-knowledgeable user to read the actual specifi-
cation of the returned contracts. Our system, on the other hand, im-
plements an exact query evaluation algorithm, which avoid this. In
[21], web services are modeled as directed graphs with nodes rep-
resenting either actions or messages. An exact evaluation algorithm
is proposed to query for graph patterns in service specifications. We
contend that such a system would not be suited for our context in
which both contracts and queries are inherently declarative specifi-
cations and not directly related to a procedural implementation.

The problem of querying behavioral objects is present also in
the area of business process management. In [3], business pro-
cesses are represented as directed graphs encoding the BPEL spec-
ification. An exact query evaluation algorithm is presented that al-
lows to query the structure of the specification graphs using graph
queries. The framework is extended in [7], in order to consider
some behavioral semantics. The premise of this line of work dif-
fers from ours in that business processes are handled as procedural
implementations (workflows), while in our work we manage con-
tracts in the form of declarative clauses. Asking for a full workflow
registration by the contract provider would significantly hinder reg-
istration into the contract database, as contracts specify only some
key properties of the workflow. Moreover, a workflow query will
likely miss all contracts whose workflows do not match its structure
yet are semantically equivalent to one that does.

Finally, many techniques we used are inspired by the work done
in model checking [25]. However, our permission problem is a
novel variation on the standard verification of satisfiability of LTL
formulae, and solving it required adapting and combining these
techniques in a novel way.

9. CONCLUSIONS
We present a broker that enables providers to register service

contracts and consumers to query them, in both cases based on the
contracts’ temporal behavior. Our novel semantics for permission
of a query by a contract takes into account the fact that contracts

may not mention some of the events of interest to the query. Per-
mission does not reduce to any standard temporal decision prob-
lem, and requires an original solution. We establish the complexity
of the permission problem (PSPACE-complete), and design an al-
gorithm for checking it. We show that the theoretical worst case
is not an impediment to scalable implementation, presenting two
distinct and complementary indexing techniques for querying large
collections of service contracts. We evaluate experimentally our
implementation, showing that it scales well with both the number
and the complexity of the contracts.
10. REFERENCES
[1] U. Airlines. Contract of carriage.

http://www.united.com/page/article/0,6867,2671,00.html.
[2] S. Angelov and P. Grefen. The business case for b2b e-contracting. In

Proc. of the 6th Int. Conf. on Electronic Commerce, 2004.
[3] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying business

processes. In VLDB ’06, pages 343–354. VLDB Endowment, 2006.
[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal

- a tool suite for automatic verification of real-time systems. In
Hybrid Systems III. 1996.

[5] M. Brambilla, A. Deutsch, L. Sui, and V. Vianu. The role of visual
tools in a web application design and verification framework : A
visual notation for ltl formulae. Int. Conf. on Web Engineering, 2005.

[6] E. Damaggio, A. Deutsch, and D. Zhou. Querying contract databases
based on temporal behavior. Technical report, 2010.

[7] D. Deutch and T. Milo. Querying structural and behavioral properties
of business processes. In Database Programming Languages. 2007.

[8] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang.
Similarity search for web services. In VLDB, 2004.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification
patterns for finite-state verification. In Workshop on Formal Methods
in Software Practice, 1998.

[10] K. Fisler and M. Y. Vardi. Bisimulation minimization in an
automata-theoretic verification framework. In Formal Methods in
Computer-Aided Design, 1998.

[11] E. Fredkin. Trie memory. Commun. ACM, 1960.
[12] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In

CAV, 2001.
[13] D. Grigori, J. C. Corrales, and M. Bouzeghoub. Behavioral

matchmaking for service retrieval. In Int. Conf. on Web Services, ’06.
[14] G. J. Holzmann. The model checker spin. IEEE Trans. Soft. Eng.,

1997.
[15] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite

automaton. Technical report, Stanford, CA, USA, 1971.
[16] M. Kyas, C. Prisacariu, and G. Schneider. Runtime monitoring of

electronic contracts. In Automated Technology for Verification and
Analysis, 2008.

[17] M. R. Lowry. Software construction and analysis tools for future
space missions. In European Conf. on Theory and Practice of
Software, 2002.

[18] Z. Milosevic and R. G. Dromey. On expressing and monitoring
behaviour in contracts. In EDOC, ’02.

[19] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM J. Comput., 1987.

[20] A. Pnueli. The temporal logic of programs. In FOCS, 1977.
[21] Z. Shen and J. Su. Web service discovery based on behavior

signatures. In Int. Conf. on Services Computing, 2005.
[22] A. P. Sistla and E. M. Clarke. The complexity of propositional linear

temporal logics. J. ACM, 1985.
[23] L. J. Stockmeyer and A. R. Meyer. Word problems requiring

exponential time. In STOC ’73: ACM Symp. on Theory of Computing.
[24] H. Strasberg. Travel terminal. http://www.travelterminal.com.
[25] M. Vardi and P. Wolper. An automata-theoretic approach to

automatic program verification. In LICS, 1986.
[26] Wikipedia. List of passenger airlines.

http://en.wikipedia.org/wiki/List_of_passenger_airlines.
[27] Wikipedia. Travel class. http://en.wikipedia.org/wiki/Travel_class.
[28] P. Wolper, M. Y. Vardi, and P. A. Sistla. Reasoning about infinite

computation paths. In FOCS, 1983.

408

